Computational neuroscience is a relatively new interdisciplinary area of inquiry that is concerned with how components of animal and human nervous systems interact to produce behaviors. It relies on quantitative and modeling approaches to understand the function of the nervous system and to design human-made devices that duplicate behaviors. Course work in computational neuroscience can prepare students for graduate studies in neurobiology or psychology, in the mathematical or engineering sciences, or in areas of medicine such as neurology or psychiatry. It can lead either to traditional academic careers or to opportunities in the corporate world.

An undergraduate degree in computational neuroscience is not available at the University of Chicago, but a minor in computational neuroscience is offered by the Biological Sciences Collegiate Division. This minor is a good option for students who are majoring in biological sciences and are interested in mathematical approaches to biology; or for students who are majoring in computer science, mathematics, physics, psychology, or statistics and are interested in neuroscience. For details, see the Biological Sciences (collegecatalog.uchicago.edu/archives/2015-2016/thecollege/biologicalsciences) section in this catalog.

Students electing this minor must have completed, or placed out of, the equivalent of a year of collegiate-level calculus and must have completed the general education requirement for the biological sciences.

Summary of Requirements for the Minor in Computational Neuroscience

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 24231</td>
<td>Methods in Computational Neuroscience</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24232</td>
<td>Computational Approaches to Cognitive Neuroscience</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24408</td>
<td>Modeling and Signal Analysis for Neuroscientists</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 26210-26211</td>
<td>Mathematical Methods for Biological Sciences I-II</td>
<td>200</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>500</td>
</tr>
</tbody>
</table>

Instead of completing a formal minor, students can easily fashion an organized course of study in computational neuroscience by selecting appropriate general education courses and electives.

For updated information on computational neuroscience activities and undergraduate programs, visit cns.bsd.uchicago.edu.

Suggested General Education Courses

Students majoring in biological sciences can elect either the BIOS 20180s or the BIOS 20190s sequence.

One of the following sequences: 200

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II</td>
</tr>
</tbody>
</table>
MATH 16100-16200 Honors Calculus I-II

SOSC 14100-14200-14300 Mind I-II-III

SUGGESTED ELECTIVES

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 24203</td>
<td>Fundamentals of Neuroscience</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24204</td>
<td>Cellular Neurobiology</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24205</td>
<td>Systems Neuroscience</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24208</td>
<td>Survey of Systems Neuroscience</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24246</td>
<td>Neurobiology of Disease I</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 24247</td>
<td>Neurobiology of Disease II</td>
<td>100</td>
</tr>
<tr>
<td>PSYC 20300</td>
<td>Biological Psychology</td>
<td>100</td>
</tr>
<tr>
<td>PSYC 20400</td>
<td>Cognitive Psychology</td>
<td>100</td>
</tr>
<tr>
<td>PSYC 20700</td>
<td>Sensation and Perception</td>
<td>100</td>
</tr>
</tbody>
</table>

Faculty

Faculty associated with this interdisciplinary area participate in a three-quarter sequence in computational neuroscience, teach upper-level courses relevant to computational neuroscience, and participate in an ongoing computational neuroscience seminar series.

COMPUTATIONAL NEUROSCIENCE COURSES

BIOS 24231. Methods in Computational Neuroscience. 100 Units.

Topics include (but are not limited to): Hodgkin-Huxley equations, Cable theory, Single neuron models, Information theory, Signal Detection theory, Reverse correlation, Relating neural responses to behavior, and Rate vs. temporal codes.

Instructor(s): S. Bensmaia

Terms Offered: Winter.

Prerequisite(s): BIOS 26210 and BIOS 26211 which must be taken concurrently, or consent of instructor.

Equivalent Course(s): CPNS 34231

BIOS 24232. Computational Approaches to Cognitive Neuroscience. 100 Units.

This course is concerned with the relationship of the nervous system to higher order behaviors (e.g., perception, object recognition, action, attention, learning, memory, and decision making). Psychophysical, functional imaging, and electrophysiological methods are introduced. Mathematical and statistical methods (e.g. neural networks and algorithms for studying neural encoding in individual neurons and decoding in populations of neurons) are discussed. Weekly lab sections allow students to program cognitive neuroscientific experiments and simulations.

Instructor(s): N. Hatsopoulos

Terms Offered: Spring

Prerequisite(s): BIOS 26210, a course in systems neuroscience, and knowledge using Matlab, or consent of instructor.

Equivalent Course(s): CPNS 33200, ORGB 34650, PSYC 34410, CPNS
BIOS 24408. Modeling and Signal Analysis for Neuroscientists. 100 Units.
The course provides an introduction into signal analysis and modeling for
neuroscientists. We cover linear and nonlinear techniques and model both
single neurons and neuronal networks. The goal is to provide students with the
mathematical background to understand the literature in this field, the principles
of analysis and simulation software, and allow them to construct their own tools.
Several of the 90-minute lectures include demonstrations and/or exercises in Matlab.
Instructor(s): W. van Drongelen Terms Offered: Spring. L.
Prerequisite(s): BIOS 26210 and 26211, or consent of instructor.
Equivalent Course(s): CPNS 32111

BIOS 26210-26211. Mathematical Methods for Biological Sciences I-II.

BIOS 26210. Mathematical Methods for Biological Sciences I. 100 Units.
This course builds on the introduction to modeling course biology students
take in the first year (BIOS 20151 or 152). It begins with a review of one-variable
ordinary differential equations as models for biological processes changing
with time, and proceeds to develop basic dynamical systems theory. Analytic
skills include stability analysis, phase portraits, limit cycles, and bifurcations.
Linear algebra concepts are introduced and developed, and Fourier methods
are applied to data analysis. The methods are applied to diverse areas of
biology, such as ecology, neuroscience, regulatory networks, and molecular
structure. The students learn computations methods to implement the models
in MATLAB.
Instructor(s): D. Kondrashov Terms Offered: Autumn. L
Prerequisite(s): BIOS 20151 or BIOS 20152 or consent of the instructor
Equivalent Course(s): CPNS 31000, PSYC 36210

BIOS 26211. Mathematical Methods for Biological Sciences II. 100 Units.
This course is a continuation of BIOS 26210. The topics start with optimization
problems, such as nonlinear least squares fitting, principal component analysis
and sequence alignment. Stochastic models are introduced, such as Markov
chains, birth-death processes, and diffusion processes, with applications
including hidden Markov models, tumor population modeling, and networks
of chemical reactions. In computer labs, students learn optimization methods
and stochastic algorithms, e.g., Markov Chain, Monte Carlo, and Gillespie
algorithm. Students complete an independent project on a topic of their interest.
Instructor(s): D. Kondrashov Terms Offered: Winter. L. Prerequisite(s): BIOS
26210
Equivalent
Equivalent Course(s): CPNS 31100, PSYC 36211
BIOS 26211. Mathematical Methods for Biological Sciences II. 100 Units.
This course is a continuation of BIOS 26210. The topics start with optimization problems, such as nonlinear least squares fitting, principal component analysis and sequence alignment. Stochastic models are introduced, such as Markov chains, birth-death processes, and diffusion processes, with applications including hidden Markov models, tumor population modeling, and networks of chemical reactions. In computer labs, students learn optimization methods and stochastic algorithms, e.g., Markov Chain, Monte Carlo, and Gillespie algorithm. Students complete an independent project on a topic of their interest.
Instructor(s): D. Kondrashov Terms Offered: Winter. L. Prerequisite(s): BIOS 26210
Equivalent Course(s): CPNS 31100, PSYC 36211