PHYSICAL SCIENCES

There are many different ways of obtaining knowledge. Knowledge in physics and chemistry is essentially linked to experimental work in the lab. Through the continual process of analyzing experiment in terms of theory and of testing theory through the discovery of new phenomena, some of the most far-reaching, universal, and magnificent discoveries about the nature of the world have been made. Observational sciences, such as astronomy or geology, create knowledge and discover truth in a related, but different, fashion. In these sciences the goal is to learn about majestic themes such as the nature of the Earth, the solar system, or indeed the universe itself. Such knowledge is gained not primarily in the lab using equipment and samples that are interchangeable, but rather through observations on a single sample that is too big, too old, too distant, and too unique to duplicate: namely, the Earth and the cosmos themselves. Field trips or telescopic observations allow one to observe what happened. The data collected are then interpreted in light of other observations. But one can never redo the entire experiment again and recreate the planets and the galaxies. The mathematical sciences play a major role throughout the physical sciences. Indeed, mathematics is the language through which physical theories are formulated. Statistics addresses questions of how to collect and interpret both experimental and observational data. Computation is essential to modern science, as part of analyzing large datasets and to work out the consequences of mathematical theories. One aspect of the general education courses in the physical sciences is to introduce the student to these different ways of knowing and these different visions of truth.

Students are required to take at least two courses in the physical sciences to satisfy the general education requirements. This requirement may be met by taking an introductory sequence in Chemistry, Geoscience, or Physics, or by taking any acceptable pairing of Physical Sciences (PHSC) courses, which generally have a broader focus than the disciplinary sequences. It is strongly recommended that the general education sequence in the physical sciences be completed in the first two years.

GENERAL EDUCATION SEQUENCES

The following introductory sequences may be used to satisfy the general education requirement in the physical sciences for all students, although these tend to be taken by sciences majors or by students who have a particular need for science (premeds). The sequences are:

CHEM 10100-CHEM 10200
CHEM 11100-CHEM 11200*
CHEM 12100-CHEM 12200
GEOS 13100-GEOS 13200
PHYS 12100-PHYS 12200*
PHYS 13100-PHYS 13200
PHYS 14100-PHYS 14200*

* For information, see the Placement Tests (collegecatalog.uchicago.edu/archives/2015-2016/thecollege/examinationcreditandtransfercredit) and Advanced Placement Credit (collegecatalog.uchicago.edu/archives/2015-2016/thecollege/examinationcreditandtransfercredit) sections elsewhere in this catalog.

There are several sequences in the physical sciences, each of which introduces a different discipline and different aspects of scientific knowledge. Physical Sciences (PHSC) courses fall mainly into four general categories that we might conveniently label as "Physics," "Astronomy and Astrophysics," "Geosciences," and "Chemistry." As a general rule, courses from two different categories may not be combined to satisfy the two-quarter general education requirement in the physical sciences. It is strongly recommended that the general education sequence in the physical sciences be completed in the first two years. Some PHSC courses restrict registration for students beyond the second year.

Students who seek to deviate from the combinations identified here must submit a petition to the master of the Physical Sciences Collegiate Division, Harper Memorial Library 235 (HM 235).

The PHSC courses in the Physics category are PHSC 11100-11200 Modern Physics I-II, PHSC 11300 Everyday Physics, and PHSC 11400-11500 Life in the Universe I-II. The approved sequences among these courses are listed below. Other sequences are not permitted.

PHSC 11100-PHSC 11200
PHSC 11100-PHSC 11300
PHSC 11400-PHSC 11500

Students wishing to take a three-quarter Physical Sciences sequence may take PHSC 11100-11200-11300, although at present only one of PHSC 11200 and PHSC 11300 is offered in any given year.

The PHSC courses in the Geosciences category are PHSC 10100 Origin and Evolution of the Solar System and the Earth, PHSC 10800 Earth as a Planet: Exploring Our Place in the Universe, PHSC 10900 Ice-Age Earth, PHSC 11000 Environmental History of the Earth, PHSC 13400 Global Warming: Understanding the Forecast, PHSC 13500 Chemistry and the Atmosphere, and PHSC 13600 Natural Hazards. The only approved sequences among these courses are listed below. The courses in these sequences can be taken in any order. Under no circumstances may a student get credit for both PHSC 10100 and PHSC 10800. Below is a summary of approved courses:

PHSC 10100-PHSC 11000
PHSC 10100-PHSC 13400
PHSC 10800-PHSC 11000
PHSC 10800-PHSC 13400
PHSC 10900-PHSC 11000
PHSC 10900-PHSC 13400
PHSC 10900-PHSC 13500
PHSC 10900-PHSC 13600
PHSC 11000-PHSC 13400
PHSC 11000-PHSC 13500
PHSC 11000-PHSC 13600
PHSC 13400-PHSC 13500
PHSC 13400-PHSC 13600
PHSC 13500-PHSC 13600

There is one sequence of PHSC courses with a focus on Chemistry, PHSC 12400 The Chemistry of Big Problems and PHSC 12500 Molecular Mechanisms of Human Disease.

PHSC 12400-PHSC 12500

In addition, for the 2015–16 academic year, PHSC 12500 (but not PHSC 12400) may be paired with some of the PHSC courses in Geosciences:

PHSC 12500-PHSC 11000
PHSC 12500-PHSC 13400
PHSC 12500-PHSC 13500

The on-campus PHSC courses in the Astronomy and Astrophysics category are PHSC 12600 Matter, Energy, Space, and Time, PHSC 12610 Black Holes, PHSC 12620 The Big Bang Theory, PHSC 12700 Stars, PHSC 12710 Galaxies, and PHSC 12720 Exoplanets. PHSC 12600-12610-12620 is a logical progression that applies physical principles based on terrestrial experiments to the cosmos at large. Similarly, PHSC 12700-12710-12720 is a logical progression that concerns observed properties of important classes of astronomical objects. Thus, a two-quarter sequence can be built most naturally from 12600 + 12610 or 12600 + 12620, and similarly from 12700 + 12710 or 12710 + 12720. It is also possible to make two-quarter sequences from 12600 + 12710 (galaxies are an example of structure that evolved from early conditions) and from 12700 + 12610 (black holes are an end state of stellar evolution). You must take 12600 or 12700 as your first course as all other courses in this category have one or the other as a prerequisite. An acceptable two-quarter sequence then may follow up with any of the other five courses (in particular, it is possible to pair PHSC 12600 and 12700), with the exception that PHSC 12600 must precede 12620 and PHSC 12700 must precede 12720. Three-quarter sequences may be created by adding any third of these six courses, again subject to the restriction that 12600 must precede 12620 and 12700 must precede 12720. The approved sequences among these courses are:

PHSC 12600-PHSC 12610
PHSC 12600-PHSC 12620
PHSC 12600-PHSC 12700
PHSC 12600-PHSC 12710
PHSC 12700-PHSC 12710
PHSC 12700-PHSC 12720
PHSC 12700-PHSC 12610

During Spring Quarter, a three-quarter Physical Science sequence is offered in Paris that is made up of PHSC 12600, PHSC 12700, and PHSC 12800 European Astronomy and Astrophysics.

Starting in Autumn Quarter 2015, PHSC 11900, PHSC 11902, and PHSC 12000 will no longer be offered. Students who have taken PHSC 11900 or PHSC 11902 may complete their general education requirement by taking PHSC 12600, PHSC 12620*, PHSC 12710, or PHSC 12720. Students who have taken 12000 may complete their general education requirement by taking PHSC 12600, PHSC 12610, PHSC 12700, or PHSC 12720**. For students who do not have a preference for a particular course, suggested pairings are PHSC 11900 with PHSC 12600 and PHSC 12000 with PHSC 12600 or 12700. Please note: PHSC 11900 may not be combined with PHSC 12610 or PHSC 12700, and PHSC 12000 may not be combined with PHSC 12620 or PHSC 12710.

* Discouraged because PHSC 11900 may not provide adequate preparation for PHSC 12620
** Discouraged because PHSC 12000 may not provide adequate preparation for PHSC 12720

Three other PHSC courses that fit into the Astronomy and Astrophysics category are PHSC 18100 The Milky Way, PHSC 18200 The Origin and Evolution of the Universe, and PHSC 18300 Searching Between the Stars. These courses may only be used as a third Physical Sciences general education course and may be combined with any acceptable two-quarter sequence, including those outside of the Astronomy and Astrophysics category.

Note on General Education in the Sciences:

Along with one of these two-quarter sequences, students must register for at least two quarters of an approved biological sciences sequence and at least one quarter of an approved mathematical science. A sixth quarter must be taken in any one of the three areas: physical science, biological science, or mathematical science. NOTE: To receive general education credit for calculus, two quarters must be taken; this will count as two quarters towards meeting the general education requirement in the sciences.

General Education Courses

PHSC 10100. Origin and Evolution of the Solar System and the Earth. 100 Units.
This course examines the physical and chemical origins of planetary systems, the role of meteorite studies in this context, and a comparison of the Earth with neighboring planets. It then turns to chemical and physical processes that lead to internal differentiation of the Earth. Further topics include the thermal balance at the Earth's surface (glaciation and the greenhouse effect), and the role of liquid water in controlling crustal geology and evolution. (L)
Instructor(s): A. Davis Terms Offered: Winter
PHSC 10800. Earth as a Planet: Exploring Our Place in the Universe. 100 Units.
This course explores the diversity of bodies in our Solar System, and the physical and chemical processes that have shaped them over their histories. We will also discuss how these studies have carried us away from an Earth-centered view of the universe to one where Earth is just one of billions of planets that exist in our galaxy. Topics to be covered include: early observations of the solar system and the laws of planetary motion, the effects of asteroid impacts into planetary surfaces, the search for habitable environments outside of Earth, and the study of extrasolar planets. (L) Instructor(s): F. Ciesla Terms Offered: Autumn

PHSC 10900. Ice-Age Earth. 100 Units.
We examine the cause and effects of Earth’s great ice ages, and use the knowledge so gained as a means to inform ourselves about the stability of Earth’s climate system and its relationship to the life of humankind. The ice age also serves as the starting point for the exploration of Earth’s history through deep time undertaken in PHSC 11000. The lab exercises deal with topographic maps that depict glacial landforms in various national parks such as Yosemite National Park in California and Glacier National Park in Montana. We also explore the glacial landforms in the Chicago vicinity through topographic maps and a day-long field trip. A day-long weekend field trip to ice-age sites is required. If a weekend date is not possible, the field trip will be run on the Wednesday prior to Thanksgiving recess. Students who register for this class must arrange to attend the field trip at one of the offered dates. (L) Instructor(s): D. Rowley Terms Offered: Not Offered 2015-16

PHSC 11000. Environmental History of the Earth. 100 Units.
This course considers how physical and biological processes determine environmental conditions at the surface of the Earth, and how environments have changed over the 4.5 billion-year history of Earth. Topics include the methods of historical inference in geology; major transitions in the history of life, including the origin of life, the evolution of oxygen-producing photosynthesis, the origin of animals, and the series of massive extinctions that have repeatedly re-set ecosystems both on land and in the sea; and ecosystem evolution, including the environmental effects of human evolution. Labs involve hands-on study of rock and fossil specimens, and analysis and interpretation of datasets drawn from the scientific literature and/or faculty research programs. Instructor(s): M. Webster; S. Kidwell Terms Offered: Spring

PHSC 11100. Modern Physics I: Modern Physics in the Everyday World. 100 Units.
This course will introduce key concepts in classical and quantum physics and will relate them to things we encounter everyday, such as lasers, microwaves, and magnetic levitation. It will also discuss some of the recent developments in chaos, nanotechnology, and quantum computing, and how they will change the world we live in. (L) Terms Offered: Autumn
Note(s): Must be taken with either PHSC 11200 or PHSC 11300
PHSC 11200. Modern Physics II: Paradoxes in Modern Physics. 100 Units.
Physics advancements are often the result of conflict between, on the one hand, existing ideas and speculations, and on the other, observations and measurements. In this course, we explore historical and modern paradoxes in physics including quantum phenomena, elementary particle physics, and others. We match common sense and sensibility with scientific abstraction to broaden our understanding of the physical world. (L)
Terms Offered: Winter
Prerequisite(s): PHSC 11100
Note(s): Must be taken with PHSC 11100

PHSC 11300. Everyday Physics. 100 Units.
This course will be a walking tour through various topics in physics. It is not organized in the traditional way—mechanics, heat, electromagnetism, quantum mechanics, and relativity—but rather will look at real-world phenomena and try to figure out what is going on. Relying somewhat on knowledge gained in PHSC 11100, we will ask questions about the world around us. No formulas will be used. Questions might include, “Which draws more water from Lake Michigan, evaporation or the city of Chicago?” and “How does my cellphone work and what can I do to improve its reception?” The course will also address more substantial topics such as measuring the density of air, figuring out whether airplanes should be able to fly, estimating the density of the Sun, and determining the size of molecules. (L)
Terms Offered: Not offered in 2015-16
Prerequisite(s): PHSC 11100 or consent of instructor

PHSC 11400. Development of Life on Earth. 100 Units.
Starting with the big bang theory of the early universe, students study how the laws of physics guided the evolution of the universe through the processes most likely to have produced life on earth as it exists today. Physics topics include the fundamental interactions and the early universe; nuclear, atomic, and molecular structure; Newton’s laws and the formation of stars, galaxies, and planetary systems; thermonuclear fusion in stars; the physical origin of the chemical elements; the laws of electricity and magnetism and electromagnetic radiation; the laws of thermodynamics; atmospheric physics; and physical processes on primordial earth. (L)
Instructor(s): D. Reid Terms Offered: Not offered in 2015-16
PHSC 11500. Extraterrestrial Life. 100 Units.
Building upon the topics in PHSC 11400, this course goes on to consider what the laws of physics has to say about life elsewhere in the universe. We begin with an analysis of the prospects for life on other bodies in the solar system, especially Mars. This is followed by a treatment of the physics behind the search for extraterrestrial intelligence and the feasibility of human interstellar and intergalactic spaceflight. We conclude with a critical examination of speculative ideas in the popular media such as the suggestion that the universe itself is a living organism. Physics topics include extended applications of topics from PHSC 11400, optics and electromagnetic communication, rocket propulsion and advanced propulsion systems, theories of special and general relativity, quantum physics, complexity, and emergence. (L)
Instructor(s): S. Wakely Terms Offered: Not offered in 2015-16
Prerequisite(s): PHSC 11400

PHSC 11902. The Secret Lives of Stars. 100 Units.
This course will explore the mystery that is hidden inside the heart of stars, which we have only recently begun to understand. For example, it will examine the physical processes that make stars the only objects in the Universe that can synthesize heavy elements, like all the atoms in your body. It will explain why some stars have winds, and why some stars retire to an old age of relaxation and cooling down while some of them blow up in the most spectacular manner. In order to do this, we will take as our starting point the diagram made in the early 20th century by Hertzsprung and Russell, which plotted the color of stars as a function of their brightness, and, through lectures and discussions, follow the subsequent developments in physics that helped us to unlock the secrets encoded therein.
Instructor(s): F. Catteneo Terms Offered: Summer
Note(s): This course fulfills the general education requirement in physical sciences for non-majors. Starting in Fall of 2015, PHSC 11900, 11902 and 12000 will no longer be offered. Students who have taken 11902 but have not taken 12000 may complete a two-quarter Physical Sciences requirement by taking PHSC 12600, 12610, 12710 or 12720, although 12710 is recommended as the best fit with 11902 among these options. This course may not be combined with PHSC 11900.
PHSC 12400. The Chemistry of Big Problems. 100 Units.
This course will discuss the chemistry of big problems that impact human life and society, such as the future accessibility of personal genetic sequence information, genetically modified organisms, or plastics and polymers and alternative sources of energy. We will use each of these topics as a window to grasp the underlying chemistry, reaction mechanisms, analytical methods, and quantitative chemical principles applied to major scientific issues that impact the world around us. Relevant examples will be considered in a discussion-oriented format to bring out chemical and analytical principles associated with big problems. The course will have a classroom lecture component as well as a laboratory component. The laboratory component will involve case studies and problem solving by application of analytical principles and independent work or teams of students. (L)
Instructor(s): Y. Krishnan Terms Offered: Winter
Prerequisite(s): Some previous background in Chemistry is recommended.

PHSC 12500. Molecular Mechanisms of Human Disease. 100 Units.
This course will examine the molecular basis for a few specific instances of human disease. We will use each of these molecular case studies as a vehicle to demonstrate quantitative chemical principles such as thermodynamics, chemical equilibrium, chemical kinetics, diffusive dynamics, and DNA damage and repair. The goal of the course will be to use well-understood biological and medical examples to illustrate chemical principles and to give students a toolbox and techniques to understand molecular systems more broadly. The course will have a classroom lecture component as well as a laboratory component. The laboratory component will involve specific case studies and mechanistic proposals that represent exploratory independent work by teams of students. (L)
Instructor(s): G. Engel Terms Offered: Spring
Prerequisite(s): Some previous background in Chemistry recommended

PHSC 12600. Matter, Energy, Space, and Time. 100 Units.
A comprehensive survey of how the physical world works, and how matter, energy, space, and time evolved from the beginning to the present. A brief survey of the historical development of mathematics, physics, and astronomy leads to a conceptual survey of the modern theory of the physical universe: space and time in relativity; the quantum theory of matter and energy; and the evolution of cosmic structure and composition. Systems such as black holes are used to illustrate the most extreme behaviors of nature, and systems such as stars are used to illustrate the explanatory power of physical reasoning. The major theme is understanding all of nature, from the prosaic to the exotic, using a powerful quantitative theory grounded in precise experiments. (L)
Instructor(s): D. Hooper Terms Offered: Autumn
PHSC 12610. Black Holes. 100 Units.
The Universe is a laboratory that reveals the behavior of matter and radiation under intense pressure, temperature, and density, far more extreme than can be replicated on Earth. Depending on its mass, a star ends its life as a spinning white dwarf, neutron star, or black hole. The strength of gravity near these compact dead stars is so high that we can observe consequences of the bending of space-time. This course will provide the physical framework necessary to understand the origin and properties of some of the most powerful and exotic phenomena known, such as supernovae, gamma-ray bursts, and quasars. (L)
Instructor(s): C. Hogan Terms Offered: Winter
Prerequisite(s): PHSC 12600 or PHSC 12700

PHSC 12620. The Big Bang. 100 Units.
The Big Bang model is a powerful framework for the interpretation of a wide range of observations and for making detailed and precise predictions for new experiments. The key motivating observations include the expansion of the Universe and how it has changed with time; the existence of radiation indicating a hot and dense early phase; the abundance of the light elements; and how matter is organized over a wide range of physical scales. The model naturally incorporates dark matter and dark energy, components that govern the growth of structure over time under the action of gravity. The course will explore the consequences of the model as it is applied to the earliest moments after the Big Bang, as well as to the fate of the Universe in the distant future. (L)
Instructor(s): E. Shirokoff Terms Offered: Spring
Prerequisite(s): PHSC 12600

PHSC 12700. Stars. 100 Units.
Elements such as carbon and oxygen are created at high temperatures and pressures in the deep interiors of stars, conditions that naturally arise in stars like the Sun. This course will outline the physical principles at work: how the theory of stellar interiors accounts for how stars shine, why they live for such long times, and how the heavy elements in their cores are dispersed to form a new generation of stars. Gravity assembles stars out of more diffuse material, a process that includes the formation of planetary systems. The course shows how, taken together, these physical processes naturally lead to the ingredients necessary for the emergence of life, namely elements like carbon, nitrogen, and oxygen, and planets in stable orbits around long-lived stars. (L)
Instructor(s): R. Kron Terms Offered: Autumn
PHSC 12710. Galaxies. 100 Units.
Galaxies have been called "island universes," places where stars are concentrated, where they are born, and where they die. Galaxies are dynamic systems in the sense that they change with time and in the sense that gravity shapes the orbit of each star within its galaxy. The Sun is one star among the 100 billion in the Milky Way, each moving on an orbit that reflects the distribution of all the other stars. This course will trace the modern picture for the formation of galaxies and the stars in them. It will also review aggregates of galaxies, how galaxies move on orbits around each other at this higher level of the hierarchy of structure, and how we arrive at the conclusion that most of the matter in the Universe is in an exotic form (dark matter).
(L)
Instructor(s): M. Gladders Terms Offered: Winter
Prerequisite(s): PHSC 12600 or PHSC 12700

PHSC 12720. Exoplanets. 100 Units.
The past two decades have witnessed the discovery of planets in orbit around other stars and the characterization of extra-Solar (exo-) planetary systems. We are now able to place our Solar System into the context of other worlds: A challenging next step is to find planets as small as the Earth in orbit around stars like the Sun. The architecture of planetary systems reflects the formation of the parent star and its protoplanetary disk, and how these have changed with time. This course will review the techniques for discovery of planets around other stars, what we have learned so far about exoplanetary systems, and the driving questions for the future, including the quest for habitable environments elsewhere. (L)
Instructor(s): J. Bean Terms Offered: Spring
Prerequisite(s): PHSC 12700

PHSC 12800. European Astronomy and Astrophysics. 100 Units.
Modern astronomy was born in Europe in the sixteenth and seventeenth centuries, led by Nicolaus Copernicus of Poland, who simplified the description of the solar system by moving the Sun to the center of the Universe. The Italian, Galileo Galilei, first pointed a telescope at the sky in 1609 and discovered the moons of Jupiter, sunspots, the stellar composition of the Milky Way, and craters on the Moon. Tycho Brahe of Denmark studied planetary motions in great detail, allowing Johannes Kepler of Germany to define the principles of the orbits of the planets by 1615. Isaac Newton of England discovered the laws of gravity and of motion, and built the reflecting telescope later in the seventeenth century. By 1774, French astronomer Charles Messier began the explosion of our current knowledge of the Universe when he catalogued what are now known to be other galaxies. Building upon this history, this course also explores recent developments in European astronomical and astrophysical technology that allows a modern exploration of the deepest regions of the Universe using a wide range of telescopes.
Instructor(s): A. Olinto Terms Offered: Spring
Note(s): This course is offered only in Paris in Spring Quarter.
PHSC 13400. Global Warming: Understanding the Forecast. 100 Units.
This course presents the science behind the forecast of global warming to enable the student to evaluate the likelihood and potential severity of anthropogenic climate change in the coming centuries. It includes an overview of the physics of the greenhouse effect, including comparisons with Venus and Mars; an overview of the carbon cycle in its role as a global thermostat; predictions and reliability of climate model forecasts of the greenhouse world. (L)
Instructor(s): D. Archer, D. MacAyeal Terms Offered: Autumn, Spring
Prerequisite(s): Some knowledge of chemistry or physics helpful.
Equivalent Course(s): ENST 12300,GEOS 13400,ENSC 13400

PHSC 13500. Chemistry and the Atmosphere. 100 Units.
This course focuses on aspects of chemistry as they apply to the Earth’s atmosphere. The first half considers atmospheric structure and fundamental chemical principles, while the second half presents examples of chemical systems that operate in the atmosphere. Topics include the chemical composition of the atmosphere, the structure of atoms and molecules, the nature of chemical reactions, the interaction of solar radiation with atmospheric gases, the properties of the water molecule, formation of an ozone layer, and the chemistry of urban air pollution.
Terms Offered: Not offered 2015-16
Equivalent Course(s): ENST 12100

PHSC 13600. Natural Hazards. 100 Units.
This course presents the current understanding of high-impact weather and geologic events and an introduction to risk assessment and mitigation. Topics include an overview of geography, statistics, and societal impacts of the world’s natural hazards; physics and forecasts of hurricanes, extratropical cyclones, tornadoes, earthquakes, tsunamis, volcanic eruptions, droughts, floods, wildfires, and landslides; climate change and weather events; quantifying risks; and successful examples of community- and national-level disaster prevention programs. (L)
Instructor(s): N. Nakamura

ELECTIVE COURSES
Any of the following can be used only as a third course in physical sciences to meet the general education requirement (of six courses total in the biological, physical, and mathematical sciences).
PHSC 18100. The Milky Way. 100 Units.
The Sun and its planetary system is part of a larger hierarchical structure, a flattened
disk of stars called the Milky Way that provides an environment for the birth of new
stars, seeded by the deaths of other stars. The Milky Way is thus a dynamic system
in several senses of the word. This course will survey the stellar and interstellar
components of the Milky Way, the distribution in space and motions of the stars and
the interstellar gas, how these components interact with each other, and how the
whole system evolves. (L)
Instructor(s): N. Gnedin Terms Offered: Winter
Prerequisite(s): Any two-course 10000-level general education sequence in
chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): ASTR 18100

PHSC 18200. The Origin and Evolution of the Universe. 100 Units.
This course discusses how the laws of nature allow us to understand the origin,
evolution, and large-scale structure of the universe. After a review of the history
of cosmology, we see how discoveries in the twentieth century (i.e., the expansion
of the universe and the cosmic background radiation) form the basis of the hot Big
Bang model. Within the context of the Big Bang, we learn how our universe evolved
from the primeval fireball.
Instructor(s): J. Frieman Terms Offered: Autumn
Prerequisite(s): Any two-course 10000-level general education sequence in
chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): ASTR 18200

PHSC 18300. Searching Between the Stars. 100 Units.
With the advent of modern observational techniques (e.g., radio, satellite
astronomy), it has become possible to study free atoms, molecules, and dust in
the vast space between the stars. The observation of interstellar matter provides
information on the physical and chemical conditions of space and on the formation
and evolution of stars.
Terms Offered: TBD
Prerequisite(s): Any two-course 10000-level general education sequence in
chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): ASTR 18300