Astronomy and Astrophysics

Department Website: http://astro.uchicago.edu

Program of Study

Astronomy is the oldest of the natural sciences; since antiquity astronomers have sought to understand the origin and destiny of the universe and its celestial contents. How did the universe evolve from an early, almost uniform, state to the rich structure that we see at the present epoch? Where did the elements of the periodic table come from? How do stars, along with their systems of planets, form and how do they change with time? Do other life-bearing worlds exist? These questions have evolved over millennia, with answers now sought using the mathematical, technological, and computational tools of modern astronomy.

For students interested in examining fundamental questions through scientific study of the universe, the Department of Astronomy and Astrophysics offers several choices to explore. Options include general education courses, the minor program in Astronomy and Astrophysics (aimed at students not majoring in the sciences), and the major program in Astrophysics, with both BA and BS tracks.

General Education Courses

Many options are available for choosing two- or three-quarter sequences that will satisfy the general education requirement in the physical sciences from among six courses numbered in the 12000s. These courses are designed for students not majoring in the sciences and present a range of foundational topics, from the grand principles governing the universe and understanding its beginning, to the formation and evolution of stars and galaxies, and the search for habitable extrasolar planets. All courses numbered in the 12000s include labs for engaging in astronomical inquiry through classical experiments, opportunities for telescope observing, and data analysis. The Study Abroad program in Paris is another option for completing the general education requirement in the physical sciences.

Students seeking a more in-depth examination of selected astrophysical topics may take a course numbered in the 18000s as a third course in the physical sciences or as a general elective. While the 12000 and 18000 courses are aimed at students not majoring in the sciences, quantitative analysis is an important part of all courses offered by the Department of Astronomy and Astrophysics. Any tools beyond pre-calculus algebra will be taught as needed.

Major in Astrophysics

The major program in Astrophysics reflects Chicago’s tradition of interdisciplinary study and emphasis on mastery of the intellectual processes of inquiry and discovery. Courses in Computer Science and Statistics complement a foundational program in Physics, reflecting the essential relationships among the physical sciences. Students will gain broad knowledge of the universal, physical laws from the nuclear to cosmological; familiarity with computational methods and statistical data analysis; and experience with experimental and observational techniques through participation in research. Graduates of the Astrophysics program will be positioned to pursue advanced degrees in physics, astronomy, or similar fields, or enter government service, science education, or scientific journalism.

There are two tracks for students interested in the major. The program leading to a BA in Astrophysics consists of fifteen courses beyond the general education requirement. The program leading to a BS in Astrophysics consists of eighteen courses beyond the general education requirement. The BS track is recommended for students expecting to apply to graduate school in the physical sciences.

Please note that courses counted toward the major must be taken for quality grades (no P/F grading).

Note: The 2018–19 academic year will be the first in which the major in Astrophysics is offered. In very particular cases, students in the Class of 2019 may be eligible to complete the major depending on how many requirements they have already completed. Interested students should consult with the Department of Astronomy and Astrophysics and their College adviser immediately to determine the possibility and a proper course of study moving forward. This in no way guarantees that the major can be completed, however. Completion of the major for members of the Class of 2020 will also be contingent on the number of electives completed so far; these students should consult with the department as soon as possible. Students in the Class of 2021 who took Physics (or Chemistry, if interested in the Chemistry Variant) in their first year will be able to enter the major.

Summary of Requirements for the BA in Astrophysics

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>Course</th>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100-13200</td>
<td>Mechanics; Electricity and Magnetism (or higher) *</td>
<td>200</td>
</tr>
</tbody>
</table>

One of the following sequences: 200

<table>
<thead>
<tr>
<th>Course</th>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 13100-13200</td>
<td>Elementary Functions and Calculus I-II *</td>
<td></td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II *</td>
<td></td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 400

MAJOR

<table>
<thead>
<tr>
<th>Course</th>
<th>Requirement</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 13300</td>
<td>Introduction to Astrophysics 6E</td>
<td>100</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td>Units</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td>-------</td>
</tr>
<tr>
<td>PHYS 13300</td>
<td>Waves, Optics, and Heat (or higher)</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 13300</td>
<td>Elementary Functions and Calculus III</td>
<td>100</td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 16300</td>
<td>Honors Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHYS 22000</td>
<td>Introduction to Mathematical Methods in Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 15400</td>
<td>Modern Physics</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 22100</td>
<td>Mathematical Methods in Physics</td>
<td>100</td>
</tr>
<tr>
<td>MATH 20100</td>
<td>Mathematical Methods for Physical Sciences II</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>CMSC 12100</td>
<td>Computer Science with Applications I</td>
<td></td>
</tr>
<tr>
<td>CMSC 15100</td>
<td>Intro To Computer Science-1</td>
<td></td>
</tr>
<tr>
<td>CMSC 16100</td>
<td>Honors Introduction to Computer Science I</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications *</td>
<td></td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
<td></td>
</tr>
<tr>
<td>STAT 24400</td>
<td>Statistical Theory and Methods I</td>
<td></td>
</tr>
<tr>
<td>STAT 24410</td>
<td>Statistical Theory and Methods Ia</td>
<td></td>
</tr>
<tr>
<td>ASTR 21100</td>
<td>Computational Techniques in Astrophysics</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 21200</td>
<td>Observational Techniques</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 29800</td>
<td>Undergraduate Research Seminar</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>Radiation Processes in Astrophysics</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 24100</td>
<td>The Physics of Stars</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>ASTR 23900</td>
<td>Physics of Galaxies</td>
<td></td>
</tr>
<tr>
<td>ASTR 24300</td>
<td>Cosmological Physics</td>
<td></td>
</tr>
<tr>
<td>Two electives to be selected from list of approved courses:</td>
<td>200</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>1500</td>
</tr>
</tbody>
</table>

* Credit may be granted by examination.

% Students who matriculated prior to Autumn 2018 may substitute any 200-level ASTR course for ASTR 13300

Summary of Requirements for the BS in Astrophysics (Physics Variant)

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100-13200</td>
<td>Mechanics; Electricity and Magnetism *</td>
<td>200</td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 13100-13200</td>
<td>Elementary Functions and Calculus I-II *</td>
<td></td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II *</td>
<td></td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
<td></td>
</tr>
</tbody>
</table>

Total Units 400

MAJOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 13300</td>
<td>Introduction to Astrophysics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 13300</td>
<td>Waves, Optics, and Heat (or higher)</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATH 13300</td>
<td>Elementary Functions and Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 16300</td>
<td>Honors Calculus III</td>
<td></td>
</tr>
<tr>
<td>PHYS 22000</td>
<td>Introduction to Mathematical Methods in Physics</td>
<td></td>
</tr>
<tr>
<td>PHYS 15400</td>
<td>Modern Physics</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22100</td>
<td>Mathematical Methods in Physics</td>
<td></td>
</tr>
<tr>
<td>MATH 20100</td>
<td>Mathematical Methods for Physical Sciences II</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
CMSC 12100 Computer Science with Applications I
CMSC 15100 Intro To Computer Science-1
CMSC 16100 Honors Introduction to Computer Science I
One of the following: 100
 STAT 22000 Statistical Methods and Applications *
 STAT 23400 Statistical Models and Methods
 STAT 24400 Statistical Theory and Methods I
 STAT 24410 Statistical Theory and Methods Ia
ASTR 21100 Computational Techniques in Astrophysics 100
ASTR 21200 Observational Techniques 100
ASTR 29800 Undergraduate Research Seminar 100
PHYS 23400 Quantum Mechanics I 100
ASTR 25400 Radiation Processes in Astrophysics 100
ASTR 24100 The Physics of Stars 100
PHYS 19700 Statistical and Thermal Physics 100
One of the following: 100
 ASTR 23900 Physics of Galaxies
 ASTR 24300 Cosmological Physics
Three electives to be selected from list of approved courses 300
Total Units 1800

* Credit may be granted by examination.

Summary of Requirements for the BS in Astrophysics (Chemistry Variant)

GENERAL EDUCATION
CHEM 11100-11200 Comprehensive General Chemistry I-II (or equivalent) * 200
One of the following sequences: 200
 MATH 13100-13200 Elementary Functions and Calculus I-II
 MATH 15100-15200 Calculus I-II *
 MATH 16100-16200 Honors Calculus I-II
Total Units 400

MAJOR
PHYS 13100-13200 Mechanics; Electricity and Magnetism (or higher) 200
ASTR 13300 Introduction to Astrophysics 100
PHYS 13300 Waves, Optics, and Heat (or higher) 100
One of the following: 100
 MATH 13300 Elementary Functions and Calculus III
 MATH 15300 Calculus III
 MATH 16300 Honors Calculus III
 MATH 20000 Mathematical Methods for Physical Sciences I
 PHYS 22000 Introduction to Mathematical Methods in Physics
One of the following: 100
 PHYS 22100 Mathematical Methods in Physics
 MATH 20100 Mathematical Methods for Physical Sciences II
One of the following: 100
 CMSC 12100 Computer Science with Applications I
 CMSC 15100 Intro To Computer Science-1
 CMSC 16100 Honors Introduction to Computer Science I
One of the following: 100
 STAT 22000 Statistical Methods and Applications *
 STAT 23400 Statistical Models and Methods
 STAT 24400 Statistical Theory and Methods I
 STAT 24410 Statistical Theory and Methods Ia
CHEM 11300 Comprehensive General Chemistry III 100
Sample Programs

The sample programs below illustrate different paths for fulfilling requirements for the Astrophysics major. The first example shows a path for the BS in Astrophysics with the introductory sequence in Physics.

First Year

Autumn Quarter
- PHYS 13100
- MATH 15100

Winter Quarter
- PHYS 13200
- MATH 15200

Spring Quarter
- PHYS 13300
- MATH 15300

Second Year

Autumn Quarter
- PHYS 15400
- PHYS 22100
- CMSC 12100

Winter Quarter
- ASTR 21100
- STAT 23400

Spring Quarter
- PHYS 23400
- Elective

Third Year

Autumn Quarter
- ASTR 25400
- ASTR 24100
- Elective

Winter Quarter
- ASTR 21200
- ASTR 29800

Spring Quarter
- CMSC 12100
- Elective

Fourth Year

Autumn Quarter
- PHYS 19700

Winter Quarter
- Elective

Spring Quarter
- ASTR 24300

This sample shows a path for the BS in Astrophysics with the introductory sequence in Chemistry.

First Year

Autumn Quarter
- CHEM 11100
- MATH 16100

Winter Quarter
- CHEM 11200
- MATH 16200

Spring Quarter
- CHEM 11300
- MATH 20000

Second Year

Autumn Quarter
- PHYS 13100
- PHYS 22000

Winter Quarter
- PHYS 13200
- STAT 22000

Spring Quarter
- PHYS 13300
- MATH 20100

Third Year

Autumn Quarter
- ASTR 25400
- CMSC 12100

Winter Quarter
- ASTR 24100
- ASTR 21100

Spring Quarter
- ASTR 21200
- ASTR 29800

Fourth Year

Autumn Quarter
- CHEM 26100

Winter Quarter
- Elective

Spring Quarter
- ASTR 23900

Electives

- ASTR 25800
- ASTR 28200
- ASTR 30100
- ASTR 30300
- ASTR 30400
- ASTR 33000
- ASTR 29800

- Credit may be granted by examination
Students who have completed the requirements for the BA or BS in Astrophysics and who have begun a substantive research project with a research mentor are encouraged to prepare an honors thesis based on their work. To be considered for honors, a student must earn a GPA of 3.5 or higher in the required courses for the major and 3.0 overall (or obtain consent from the assistant chair for academic affairs), and have an approved research project that will be supervised by a faculty member.

Eligible students who wish to be considered for honors will first meet with the academic affairs administrator to obtain guidelines and requirements for this option, followed by a meeting with their research mentor resulting in a plan for the supervision of the research. The student enrolls in ASTR 29900 Honors Thesis in any quarter of their graduation year. A goal of the honors track is to mentor students through the process of preparing research and submitting it for publication. Along the way, students present their research to various groups, including Astronomy and Astrophysics faculty, for feedback and discussion.

Minor in Astronomy and Astrophysics

The grand narrative of astronomy holds wide popular appeal and lends itself to interdisciplinary study: there is a deep history and cultural context, the night sky is profoundly inspiring and accessible to everyone, and the spirit of exploration is communicated in daily media reports of new discoveries. The minor in Astronomy and Astrophysics was designed for students not majoring in the sciences to cultivate understanding of science as a human endeavor across multiple social, historical, and cultural contexts, and to develop comprehension of the quantitative reasoning that supports a deep conceptual understanding of science.

Students are allowed flexibility in selecting five courses to compose a rigorous program of study according to individual interest. The selection must include at least two courses numbered in the 12000s and at least one in the 18000s. It is possible for a student pursuing the minor to substitute a course numbered in the 20000s for one of the 18000 courses. Students interested in exploring this option must meet with the academic affairs administrator to discuss course selection.

Please note: courses taken to satisfy the general education requirement in the physical sciences may not be counted towards the minor. Students who satisfy their general education requirement in the physical sciences in Astronomy and Astrophysics may pursue the minor through completing the remaining courses numbered in the 12000s and at least one in the 18000s.
There are no Physics or Mathematics prerequisites for the minor. Courses must be taken for quality grades (no P/F grading). Students must meet with the academic affairs administrator before the end of Spring Quarter of their third year to declare their intention to complete the minor and fill out the College's Consent to Complete a Minor Program (http://college.uchicago.edu/sites/college.uchicago.edu/files/Consent_Minor_Program.pdf) form.

Study Abroad Program

Every Spring Quarter a three-course Astronomy program is offered in Paris, composed from the courses numbered in the 12000s that are offered on campus. This sequence was designed for students not majoring in the sciences but may also be of interest to science majors who want to supplement their work in physics and chemistry with a quarter devoted to the cosmos. In Spring Quarter 2019, the Paris program will offer ASTR 12600 Matter, Energy, Space, and Time; ASTR 12610 Black Holes; and ASTR 12620 The Big Bang.

The Astronomy program in Paris satisfies the general education requirement in the physical sciences. Students who have already completed their general education requirement in the physical sciences may count the three courses taken in Paris toward the five required to satisfy the minor in Astronomy and Astrophysics. For details, see the Study Abroad (https://study-abroad.uchicago.edu) page for Paris: Astronomy (http://study-abroad.uchicago.edu/programs/paris-astronomy).

Astronomy and Astrophysics Courses

ASTR 12600. Matter, Energy, Space, and Time. 100 Units.
A comprehensive survey of how the physical world works, and how matter, energy, space, and time evolved from the beginning to the present. A brief survey of the historical development of mathematics, physics, and astronomy leads to a conceptual survey of the modern theory of the physical universe: space and time in relativity; the quantum theory of matter and energy; and the evolution of cosmic structure and composition. The major theme of this course is the understanding of all nature, from the prosaic to the exotic, using powerful quantitative theory grounded in precise experiments. Although quantitative analysis will be an important part of the course, students will not be expected to employ mathematics beyond algebra. (L)
Instructor(s): Stephan Meyer Terms Offered: Autumn
Equivalent Course(s): PHSC 12600

ASTR 12610. Black Holes. 100 Units.
Black Holes are the most exotic, extreme and paradoxical systems in the universe. They are the densest concentrations of energy, yet they convert all matter that falls in to pure space-time curvature; they radiate more power than anything else, even though most of their radiation is not even made of light; they are mathematically the most perfectly understood of any physical structure, but their enigmatic behavior is still the subject of a violent disagreement among experts that highlights our ignorance of how quantum physics relates to gravity. This course will survey the physics of space and time, the nature of black holes, their effects on surrounding matter and light, the astrophysical contexts in which they are observed, frontier areas of research as quantum gravity and gravitational waves, and the importance of space-time physics to everyday needs such as navigation and energy. The modern theory of space and time, as well as black holes, will be placed in historical context, with special attention to the work of Albert Einstein. Experimental exercises will include direct measurement of the speed of light and gravitational mass, and experience with interferometry. Quantitative analysis will be an important part of the course, but mathematics beyond algebra will not be required. (L)
Instructor(s): Craig Hogan Terms Offered: Winter
Prerequisite(s): PHSC 12600 or PHSC 12700
Equivalent Course(s): PHSC 12610

ASTR 12620. The Big Bang. 100 Units.
The Big Bang model describes the Universe on the largest scales and its evolution from the earliest observationally accessible times through the formation of the complex world we live in today. This powerful framework allows us to interpret a wide range of observations and to make detailed and precise predictions for new experiments. The key motivating observations include the expansion of the Universe and how it has changed with time; the existence of radiation indicating a hot and dense early phase; the abundance of the light elements; and how matter is organized over a wide range of physical scales. The model naturally incorporates dark matter and dark energy, two surprising and poorly understood components that govern the growth of structure over time. The course will explore the history of scientific cosmology and the evidence for the Big Bang model, its consequences for the earliest moments after the Big Bang, and its predictions for the eventual fate of the Universe. Labs will include a hands-on measurement of the relic cosmic microwave background radiation from the early universe and the use of astronomical data to verify key discoveries in the history of Big Bang cosmology. Quantitative analysis will be an important part of the course, but prior experience with mathematics beyond algebra will not be required. (L)
Instructor(s): Dan Hooper Terms Offered: Spring
Prerequisite(s): PHSC 12600
Equivalent Course(s): PHSC 12620
ASTR 12700. Stars. 100 Units.
Elements such as carbon and oxygen are created in fusion reactions at high temperatures and pressures in the deep interiors of stars, conditions that naturally arise in stars like the Sun. This course will outline the physical principles at work and the history of the development of the key ideas: how nuclear physics and the theory of stellar interiors account for how stars shine, why they live for such long times, and how the heavy elements in their cores are dispersed to form a new generation of stars. Gravity assembles stars out of more diffuse material, a process that includes the formation of planetary systems. The course shows how, taken together, these physical processes naturally lead to the ingredients necessary for the emergence of life, namely elements like carbon, nitrogen, and oxygen, and planets in stable orbits around long-lived stars. The course features quantitative analysis of data; any tools needed beyond pre-calculus algebra will be taught as part of the course. (L) Instructor(s): Daniel Fabrycky Terms Offered: Autumn
Equivalent Course(s): PHSC 12700

ASTR 12710. Galaxies. 100 Units.
Galaxies have been called “island universes,” places where stars are concentrated, where they are born, and where they die. The study of galaxies reaches back to the Renaissance; Galileo Galilei first pointed a telescope skyward in 1610 and confirmed a then 2000 year-old Greek conjecture about the nature of our own galaxy—the Milky Way. This course will use extensive modern observational data from a wide range of telescopes to trace the modern picture for the formation and evolution of galaxies and the stars in them. Galaxies will then be used as markers of yet larger scale structures, in order to explore the influence of gravity over cosmic time. The object of study in this course is galaxies, and the narrative arc traced through that extensive data and understanding will highlight our profound discovery that most of the mass in galaxies (and the Universe as a whole) is in fact an exotic form of matter-dark matter—that we cannot directly see. Quantitative analysis will be an important part of the course in both laboratory work and lectures, but mathematics beyond algebra and some geometric understanding will not be required. This course will feature several observationally-oriented labs that will allow students to directly experience how some of the modern understanding of galaxies has arisen. (L) Instructor(s): Michael Gladders Terms Offered: Winter
Prerequisite(s): PHSC 12600 or PHSC 12700. PHSC 12710 can be taken as the first course in a sequence combined with PHSC 12720.
Equivalent Course(s): PHSC 12710

ASTR 12720. Exoplanets. 100 Units.
The past two decades have witnessed the discovery of planets in orbit around other stars and the characterization of extra-Solar (exo-) planetary systems. We are now able to place our Solar System into the context of other worlds and a surprising conclusion that most planetary systems look nothing like our own. A challenging next step is to find planets as small as the Earth in orbit around stars like the Sun. The architecture of planetary systems reflects the formation of the parent star and its protoplanetary disk, and how these have changed with time. This course will review the techniques for discovery of planets around other stars, what we have learned so far about exoplanetary systems, and the driving questions for the future, including the quest for habitable environments elsewhere. Although quantitative analysis will be an important part of the course, students will not be expected to employ mathematics beyond algebra. (L) Instructor(s): Leslie Rogers Terms Offered: Spring
Prerequisite(s): PHSC 10800, PHSC 10100, PHSC 12700 or PHSC 12710.
Equivalent Course(s): PHSC 12720

ASTR 13300. Introduction to Astrophysics. 100 Units.
The course is intended for first-year students intending to major in Astrophysics as an introduction to the range of important physical processes that operate in astrophysical environments, and how these govern structures across a wide range of scales, from planets to superclusters. We will examine gravitating systems such as stars and galaxies, both in an out of equilibrium, in situations where the particles are collisionless (star clusters) and where the system is collisional (stars forming out of dense gas). The course will address thermal radiation in a number of contexts, including the relic radiation from the Big Bang. Line emission and absorption will also be introduced. Thermodynamic principles will be used to illuminate the behavior and evolution of a number of kinds of astrophysical systems, such as how supermassive black holes may have formed.
Instructor(s): Angela Olinto Terms Offered: Spring
Prerequisite(s): PHYS 13300; may be taken concurrently.

ASTR 18000. The Search for Extraterrestrial Life. 100 Units.
The origin of life is one of the biggest questions of modern science. While substantial progress has been made in understanding how life arose on our planet, such research represents just a single case study in how life originates and evolves. This course covers the search for life beyond Earth from the planets and moons of the Solar System to planets orbiting other stars and intelligent life that may have left its mark on macroscopic scales. The discovery of life beyond Earth would be transformative for our understanding of humanity’s place in the universe. A range of ongoing and planned experiments have the potential to detect or put strong constraints on the existence of life during the next few decades. This class will mix traditional lectures with flipped classroom problem-solving sessions.
Instructor(s): J. Bean Terms Offered: Autumn
ASTR 18100. The Milky Way. 100 Units.
Within a largely empty universe, we live in a vast stellar “island” that we call the Milky Way. As we survey the stellar and interstellar components of the Milky Way—the distribution and motions of stars and interstellar gas, and how these dynamic, ever-changing components interact with each other during their life cycles inside the Milky Way—we will follow the path of ancient astronomers, wonder at their mistakes and prejudices, and form our own understanding.
Instructor(s): Nickolay Gnedin Terms Offered: Spring
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): PHSC 18100

ASTR 18700. From Fossils to Fermi’s Paradox: Origin and Evolution of Intelligent Life. 100 Units.
The course approaches Fermi’s question, “Are we alone in the universe?,” in the light of recent evidence primarily from three fields: the history and evolution of life on Earth (paleontology), the meaning and evolution of complex signaling and intelligence (cognitive science), and the distribution, composition and conditions on planets and exoplanets (astronomy). We also review the history and parameters governing extrasolar detection and signaling. The aim of the course is to assess the interplay between convergence and contingency in evolution, the selective advantage of intelligence, and the existence and nature of life elsewhere in the universe - in order to better understand the meaning of human existence.
Instructor(s): P. Sereno; L. Rogers; S. London Terms Offered: Winter
Prerequisite(s): Third or fourth-year standing
Equivalent Course(s): PSYC 28810, BPRO 28800

ASTR 20000. Tutorial in Astronomy and Astrophysics. 100 Units.
Students in this tutorial read topics in astronomy and astrophysics under the supervision of a faculty member. Instructors meet with one to three students for approximately two hours each week to discuss readings on topics they choose together.
Instructor(s): TBD Terms Offered: TBD
Prerequisite(s): Any 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Note(s): Students must arrange with instructor in advance of the start of the term. Class limited to six students. Available for either quality grades or for P/F grading.

ASTR 21100. Computational Techniques in Astrophysics. 100 Units.
This course will introduce basic computational techniques most often used in astronomical research, such as interpolation, transforms, smoothing, numerical differentiation and integration, integration of ordinary differential equations, and Monte Carlo methods, and elements of basic computer algorithms, data structures, and parallel programming using Python as the main course programming language. Practical examples where these numerical techniques are applied will be covered via homework and in class exercises using real-world astronomical problems and results of recent papers with emphasis on implementing the algorithms from scratch. The course will cover the access to astronomical archival data, and how to search it efficiently, focusing specifically on the Sloan Digital Sky Survey, but with introduction to other data sets. Machine learning methods will be introduced to illustrate how large data sets can be mined for interesting information.
Instructor(s): Andrey Kravtsov Terms Offered: Winter
Prerequisite(s): CMSC 12100; or CMSC 15100 or CMSC 16100 plus working knowledge of Python.

ASTR 21200. Observational Techniques, 100 Units.
This course will prepare students in techniques that will be used in their independent research by introducing observation and analysis techniques in a field of astrophysics chosen by the instructor. Students will learn basics of astronomical instrumentation and will apply that knowledge in a practical context (for example, using an on-campus telescope or telescopes controlled robotically from campus). The process of data reduction and calibration will be illustrated, leading to the extraction of scientifically meaningful results.
Instructor(s): Doyal Harper Terms Offered: Spring
Prerequisite(s): ASTR 1300 or by consent of instructor.

ASTR 23000. Cosmos and Conscience: Looking for Ourselves Elsewhere. 100 Units.
Science and religion are two ways, among many others, that people can seek to know about reality: how do we construct ordered pictures of the whole-cosmos or civilization—and how do we relate to them in terms of action? How do we know what we do not know, and what does that kind of “knowledge” mean for the orientation and direction of human existence? How would cultural biases be affected by knowing that there are others “out there” in the universe, should we discover them? From various perspectives, this course addresses these questions of the origins, structures, and ends of reality as we look for ourselves—seek understanding of the human condition—in the cosmos but also in complex religious and cultural traditions. Whereas in our popular culture, science is often identified with the realm of knowledge and religion is simply “belief” or “practice,” the course also seeks to trace the rational limits of science and the rational force of religion with respect to the ethical problem of the right and good conduct of human life.
Instructor(s): W. Schweiker, D. York Terms Offered: Not offered in 2018-2019
Prerequisite(s): Third- or fourth-year standing
Equivalent Course(s): RLST 23603, BPRO 23000
ASTR 23900. Physics of Galaxies. 100 Units.
This course will provide a comprehensive introduction to galaxies and the interstellar medium and will examine the physical processes involved in their structure and evolution. Topics will include the stellar content of galaxies and the dynamics of stars within galaxies, the physical state of the interstellar medium, central supermassive black holes and power generation in active galactic nuclei, what can be learned about the distribution of mass from gravitational lensing, and processes that shape the relative distributions of dark matter and baryonic matter.
Instructor(s): Hsiao-Wen Chen Terms Offered: Spring
Prerequisite(s): ASTR 24100 or consent of instructor.

ASTR 24100. The Physics of Stars. 100 Units.
This course develops the physical theory of the internal structure of stars and how their structure changes with time. The material illustrates how to build model stars based on these physical principles and covers observational constraints on these models, such as the neutrino flux from the core of the Sun. Topics include supernovae and the end states of stars-white dwarfs, neutron stars, and black holes.
Instructor(s): Robert Rosner Terms Offered: Winter
Prerequisite(s): ASTR 25400.

ASTR 24300. Cosmological Physics. 100 Units.
This course will provide a comprehensive introduction to the principal topics in cosmology, including theoretical and observational foundations. Key topics will include the expansion of the Universe, dark matter and energy, cosmic microwave background, hot Big Bang, and the origin and evolution of structure.
Instructor(s): Wayne Hu Terms Offered: Spring
Prerequisite(s): ASTR 24100 or consent of instructor.

ASTR 25400. Radiation Processes in Astrophysics. 100 Units.
Most of what we know about the Universe comes from detection of electromagnetic radiation emitted by individual sources or by diffuse media. Once we understand the processes by which the radiation was created and the processes by which the radiation is scattered or modified as it passes through matter, we can address the physical nature of the sources. The physics of radiation processes includes electricity and magnetism; quantum mechanics and atomic and nuclear structure; statistical mechanics; and special relativity.
Instructor(s): Damiano Caprioli Terms Offered: Autumn
Prerequisite(s): ASTR 13300 and PHYS 15400.
Equivalent Course(s): ASTR 30500

ASTR 28200. Current Topics in Astrophysics. 100 Units.
This advanced course presents the forefront research and interests of a member of the Astronomy ; Astrophysics faculty, with instructors and topics changing annually.
Instructor(s): Erik Shirokoff Terms Offered: Winter
Prerequisite(s): PHYS 15400. Recommended for third- and fourth-year students majoring in Physics or the Geophysical Sciences, or students who have completed two quarters of Calculus.

ASTR 28300. Current Topics in Astrophysics: Instrumentation. 100 Units.
The topic of this course in 2019 is Catching Long-wavelength Photons. Many important events in the history of our universe are best observed at wavelengths between the microwave and the far-infrared. These include the cosmic microwave background (CMB), the early galaxies which played host to the first stars during the epoch of reionization, and the astrophysical processes which drive nearby star forming regions. This class will introduce these science topics and then explore in detail the tools and techniques required to measure this radiation. Topics will include: antennas, horns, and direct absorbers; receiver sensitivity and fundamental noise sources; coherent detectors, bolometers, and pair-breaking superconducting devices; microwave theory and interferometry; telescope fundamentals; and a survey of current and near-future instruments. This course should provide a comprehensive background for students interested in instrumentation for the CMB, submm, and far-IR astronomy. Grading will include problem sets and a final project in which students design their own detailed instrument proposal. There are no lab sections, though some class sessions will involve hands-on demonstrations in a research lab on campus.
Instructor(s): Erik Shirokoff Terms Offered: Winter
Prerequisite(s): Third- or fourth-year students majoring in Astrophysics, Physics or the Geophysical Sciences; or by consent of instructor.

ASTR 29700. Participation in Research. 100 Units.
Students are assigned to work in the research group of a member of the faculty. Participation in research may take the form of independent work on a small project or assistance to an advanced graduate student or faculty member in his or her research.
Instructor(s): Rich Kron Terms Offered: Autumn Spring Summer Winter
Prerequisite(s): Third- or fourth-year standing and consent of instructor.
Note(s): Students must arrange with instructor in advance of the start of the term. Students are required to submit the College Reading and Research Course Form. Available for either quality grades or for P/F grading. Students may register for this course for as many quarters as they wish; they need not work with the same faculty member each time.
ASTR 29800. Undergraduate Research Seminar. 100 Units.
In this course students will engage with various scientific practices to prepare them for participation in research. Students will critically analyze research presented in popular and scholarly scientific literature and practice computational, statistical, and observational techniques to explore astrophysical problems. The course will emphasize student-led discussions and interactive presentations to synthesize previous coursework and strengthen scientific thinking and communication skills. Guest lectures by members of research groups will highlight projects undertaken by faculty in the Astronomy and Astrophysics Department to acquaint students with possibilities for research participation.
Instructor(s): Clarence Chang Terms Offered: Spring
Prerequisite(s): CMSC 12100, CMSC 15100 or CMSC 16100; STAT 22000, STAT 23400, STAT 24400 or STAT 24410; and ASTR 21100 and ASTR 21200.
Note(s): Intended for students in the Major for Astrophysics program.

ASTR 29900. Honors Thesis. 100 Units.
Students who have completed the requirements for the B.A. or B.S. in Astrophysics and who have begun a substantive research project with a research mentor are encouraged to prepare an Honors Thesis based on their work.
Instructor(s): Rich Kron Terms Offered: Autumn Spring Winter
Prerequisite(s): Open to students who are majoring in Astrophysics with fourth-year standing and approval of thesis topic.
Students are required to submit the College Reading and Research Course form.
Note(s): To be considered for Honors, a student must earn a G.P.A. of 3.50 or higher in the required courses for the Major and 3.0 overall (or obtain consent from the Astronomy and Astrophysics Assistant Chair for Academic Affairs), and have an approved research project that will be supervised by a faculty member. Eligible students who wish to be considered for Honors will first meet with the Academic Affairs Administrator to obtain guidelines and requirements for this option, followed by a meeting with their research mentor resulting in a plan for the supervision of the research.
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

Times was used instead of Trajan.

Times was used instead of Palatino.

The editor may contact Leepfrog for a draft with the correct fonts in place.