PROGRAM OF STUDY

Astronomy is the oldest of the natural sciences; since antiquity astronomers have sought to understand the origin and destiny of the universe and its celestial contents. How did the universe evolve from an early, almost uniform, state to the rich structure that we see at the present epoch? Where did the elements of the periodic table come from? How do stars, along with their systems of planets, form and how do they change with time? Do other life-bearing worlds exist? These questions have evolved over millennia, with answers now sought using the mathematical, technological, and computational tools of modern astronomy.

For students interested in examining fundamental questions through scientific study of the universe, the Department of Astronomy and Astrophysics offers several choices to explore. Options include general education courses, the minor program in Astronomy and Astrophysics (aimed at students not majoring in the sciences), and the major program in Astrophysics, with both BA and BS tracks.

GENERAL EDUCATION COURSES

Many options are available for choosing two- or three-quarter sequences that will satisfy the general education requirement in the physical sciences (http://collegecatalog.uchicago.edu/thecollege/physicalsciences/) from among six courses numbered in the 12000s. These courses are designed for students not majoring in the sciences and present a range of foundational topics, from the grand principles governing the universe and understanding its beginning, to the formation and evolution of stars and galaxies, and the search for habitable extrasolar planets. All courses numbered in the 12000s include labs for engaging in astronomical inquiry through classical experiments, opportunities for telescope observing, and data analysis. The Study Abroad program in Paris is another option for completing the general education requirement in the physical sciences.

Students seeking a more in-depth examination of selected astrophysical topics may take a course numbered in the 18000s as a third course in the physical sciences or as a general elective. While the 12000 and 18000 courses are aimed at students not majoring in the sciences, quantitative analysis is an important part of all courses offered by the Department of Astronomy and Astrophysics. Any tools beyond pre-calculus algebra will be taught as needed.

MAJOR IN ASTROPHYSICS

The major program in Astrophysics reflects Chicago's tradition of interdisciplinary study and emphasis on mastery of the intellectual processes of inquiry and discovery. Courses in Computer Science and Statistics complement a foundational program in Physics, reflecting the essential relationships among the physical sciences. Students will gain broad knowledge of the universal, physical laws from the nuclear to cosmological; familiarity with computational methods and statistical data analysis; and experience with experimental and observational techniques through participation in research. Graduates of the Astrophysics program will be positioned to pursue advanced degrees in physics, astronomy, or similar fields, or enter government service, science education, or scientific journalism.

There are two tracks for students interested in the major. The program leading to a BA in Astrophysics consists of fifteen courses beyond the general education requirement. The program leading to a BS in Astrophysics consists of eighteen courses beyond the general education requirement. The BS track is recommended for students expecting to apply to graduate school in the physical sciences.

Please note that courses counted toward the major must be taken for quality grades (no P/F grading).

SUMMARY OF REQUIREMENTS FOR THE BA IN ASTROPHYSICS

<table>
<thead>
<tr>
<th>GENERAL EDUCATION</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100-13200</td>
<td>200</td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td>200</td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II *</td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
</tr>
<tr>
<td>Total Units</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 13300</td>
<td>Introduction to Astrophysics §</td>
</tr>
<tr>
<td>PHYS 13300</td>
<td>Waves, Optics, and Heat (or higher)</td>
</tr>
<tr>
<td>One of the following:</td>
<td>100</td>
</tr>
<tr>
<td>MATH 13300</td>
<td>Elementary Functions and Calculus III</td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Calculus III</td>
</tr>
<tr>
<td>MATH 16300</td>
<td>Honors Calculus III</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
</tr>
<tr>
<td>MATH 18300</td>
<td>Mathematical Methods in the Physical Sciences I</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>MATH 18400</td>
<td>Mathematical Methods in the Physical Sciences II</td>
</tr>
<tr>
<td>MATH 19620</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH 20250</td>
<td>Abstract Linear Algebra</td>
</tr>
<tr>
<td>MATH 20300</td>
<td>Analysis in Rn I</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>ASTR 20500</td>
<td>Introduction to Python Programming with Applications to Astro Statistics</td>
</tr>
<tr>
<td>CMSC 12100</td>
<td>Computer Science with Applications I</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications *</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
</tr>
<tr>
<td>STAT 24400</td>
<td>Statistical Theory and Methods I</td>
</tr>
<tr>
<td>STAT 24410</td>
<td>Statistical Theory and Methods Ia</td>
</tr>
<tr>
<td>PHYS 23410</td>
<td>Quantum Mechanics I</td>
</tr>
<tr>
<td>ASTR 21100</td>
<td>Computational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 21200</td>
<td>Observational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 29800</td>
<td>Undergraduate Research Seminar</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>Radiation Processes in Astrophysics</td>
</tr>
<tr>
<td>ASTR 24100</td>
<td>The Physics of Stars</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>ASTR 23900</td>
<td>Physics of Galaxies</td>
</tr>
<tr>
<td>ASTR 24300</td>
<td>Cosmological Physics</td>
</tr>
<tr>
<td>Two electives to be selected from list of approved courses</td>
<td>200</td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
</tr>
</tbody>
</table>

* Credit may be granted by examination.

§ Students who matriculated prior to Autumn 2018 may substitute any 200-level ASTR course for ASTR 13300.

† Students in the BA in Astrophysics (Physics Variant) who matriculated prior to Autumn 2020 and who have already completed PHYS 15400 Modern Physics are not required to take PHYS 23410 Quantum Mechanics I.

Summary of Requirements for the BS in Astrophysics (Physics Variant)

General Education

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100-13200</td>
<td>Mechanics; Electricity and Magnetism (or higher)</td>
<td>200</td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td></td>
<td>200</td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II *</td>
<td></td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td></td>
<td>400</td>
</tr>
</tbody>
</table>

Major

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 13300</td>
<td>Introduction to Astrophysics §</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 13300</td>
<td>Waves, Optics, and Heat (or higher)</td>
<td>100</td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>MATH 13300</td>
<td>Elementary Functions and Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 16300</td>
<td>Honors Calculus III</td>
<td></td>
</tr>
<tr>
<td>MATH 18300</td>
<td>Mathematical Methods in the Physical Sciences I</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>MATH 18400</td>
<td>Mathematical Methods in the Physical Sciences II</td>
<td></td>
</tr>
<tr>
<td>MATH 19620</td>
<td>Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 20250</td>
<td>Abstract Linear Algebra</td>
<td></td>
</tr>
<tr>
<td>MATH 20300</td>
<td>Analysis in Rn I</td>
<td></td>
</tr>
<tr>
<td>One of the following:</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>ASTR 20500</td>
<td>Introduction to Python Programming with Applications to Astro Statistics</td>
<td></td>
</tr>
<tr>
<td>CMSC 12100</td>
<td>Computer Science with Applications I</td>
<td></td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications *</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
</tr>
<tr>
<td>STAT 24400</td>
<td>Statistical Theory and Methods I</td>
</tr>
<tr>
<td>STAT 24410</td>
<td>Statistical Theory and Methods Ia</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 23410</td>
<td>Quantum Mechanics I</td>
</tr>
<tr>
<td>PHYS 23510</td>
<td>Quantum Mechanics II</td>
</tr>
<tr>
<td>PHYS 27900</td>
<td>Statistical and Thermal Physics</td>
</tr>
<tr>
<td>ASTR 21100</td>
<td>Computational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 21200</td>
<td>Observational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 29800</td>
<td>Undergraduate Research Seminar</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>Radiation Processes in Astrophysics</td>
</tr>
<tr>
<td>ASTR 24100</td>
<td>The Physics of Stars</td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 23900</td>
<td>Physics of Galaxies</td>
</tr>
<tr>
<td>ASTR 24300</td>
<td>Cosmological Physics</td>
</tr>
</tbody>
</table>

Three electives to be selected from list of approved courses 300

Total Units 1800

* Credit may be granted by examination.

§ Students who matriculated prior to Autumn 2018 may substitute any 200-level ASTR course for ASTR 13300.

† Students in the BS in Astrophysics (Physics Variant) who matriculated prior to Autumn 2020 and who have already completed PHYS 15400 Modern Physics and PHYS 23400 Quantum Mechanics I are not required to take PHYS 23510 Quantum Mechanics II.

Summary of Requirements for the BS in Astrophysics (Chemistry Variant)

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 11100-11200</td>
<td>Comprehensive General Chemistry I-II (or equivalent) *†</td>
</tr>
</tbody>
</table>

One of the following sequences: 200

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 13100-13200</td>
<td>Elementary Functions and Calculus I-II</td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II *†</td>
</tr>
</tbody>
</table>

Total Units 400

MAJOR

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100-13200-13300</td>
<td>Mechanics; Electricity and Magnetism; Waves, Optics, and Heat (or higher)</td>
</tr>
<tr>
<td>ASTR 13300</td>
<td>Introduction to Astrophysics</td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 13300</td>
<td>Elementary Functions and Calculus III</td>
</tr>
<tr>
<td>MATH 15300</td>
<td>Calculus III</td>
</tr>
<tr>
<td>MATH 16300</td>
<td>Honors Calculus III</td>
</tr>
<tr>
<td>MATH 18300</td>
<td>Mathematical Methods in the Physical Sciences I</td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 18400</td>
<td>Mathematical Methods in the Physical Sciences II</td>
</tr>
<tr>
<td>MATH 19620</td>
<td>Linear Algebra</td>
</tr>
<tr>
<td>MATH 20250</td>
<td>Abstract Linear Algebra</td>
</tr>
<tr>
<td>MATH 20300</td>
<td>Analysis in Rn I</td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 20500</td>
<td>Introduction to Python Programming with Applications to Astro Statistics</td>
</tr>
<tr>
<td>CMSC 12100</td>
<td>Computer Science with Applications I</td>
</tr>
</tbody>
</table>

One of the following: 100

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications *</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-------------</td>
<td>--</td>
</tr>
<tr>
<td>STAT 24400</td>
<td>Statistical Theory and Methods I</td>
</tr>
<tr>
<td>STAT 24410</td>
<td>Statistical Theory and Methods Ia</td>
</tr>
<tr>
<td>CHEM 11300</td>
<td>Comprehensive General Chemistry III</td>
</tr>
<tr>
<td>ASTR 21100</td>
<td>Computational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 21200</td>
<td>Observational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 29800</td>
<td>Undergraduate Research Seminar</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>Radiation Processes in Astrophysics</td>
</tr>
<tr>
<td>ASTR 24100</td>
<td>The Physics of Stars</td>
</tr>
<tr>
<td>CHEM 26100</td>
<td>Quantum Mechanics</td>
</tr>
<tr>
<td>CHEM 26200</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>ASTR 23900</td>
<td>Physics of Galaxies</td>
</tr>
<tr>
<td>ASTR 24300</td>
<td>Cosmological Physics</td>
</tr>
</tbody>
</table>

One elective to be selected from list of approved courses 100

Total Units 1800

* Credit may be granted by examination
† CHEM 10100-10200 Introductory General Chemistry I-II and CHEM 12100-12200 Honors General Chemistry I-II also satisfy this requirement. Enrollment into a particular sequence is based on chemistry placement or AP score. Students should consult with the Department of Chemistry regarding Advanced Placement and Accreditation Examinations.

SAMPLE PROGRAMS

The sample programs below illustrate different paths for fulfilling requirements for the Astrophysics major. The first example shows a path for the BS in Astrophysics with the introductory sequence in Physics.

First Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100</td>
<td>PHYS 13200</td>
<td>ASTR 13300</td>
</tr>
<tr>
<td>MATH 15100</td>
<td>MATH 15200</td>
<td>PHYS 13300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 15300</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 20500</td>
<td>ASTR 21200</td>
<td>ASTR 21100</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>PHYS 23410</td>
<td>ASTR 29800</td>
</tr>
<tr>
<td></td>
<td>MATH 18400</td>
<td>PHYS 23510</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 25400</td>
<td>ASTR 24100</td>
<td>Elective</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ASTR 24300</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 27900</td>
<td>Elective</td>
<td>ASTR 24300</td>
</tr>
</tbody>
</table>

This sample shows a path for the BS in Astrophysics with the introductory sequence in Chemistry.

First Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 11100</td>
<td>CHEM 11200</td>
<td>ASTR 13300</td>
</tr>
<tr>
<td>MATH 15100</td>
<td>MATH 15200</td>
<td>CHEM 11300</td>
</tr>
<tr>
<td></td>
<td></td>
<td>MATH 15300</td>
</tr>
</tbody>
</table>

Second Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100</td>
<td>PHYS 13200</td>
<td>PHYS 13300</td>
</tr>
<tr>
<td></td>
<td>MATH 18400</td>
<td>STAT 22000</td>
</tr>
</tbody>
</table>

Third Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 20500</td>
<td>ASTR 21200</td>
<td>ASTR 21100</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>ASTR 24100</td>
<td>ASTR 29800</td>
</tr>
</tbody>
</table>

Fourth Year

<table>
<thead>
<tr>
<th>Autumn Quarter</th>
<th>Winter Quarter</th>
<th>Spring Quarter</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 26100</td>
<td>CHEM 26200</td>
<td>ASTR 23900</td>
</tr>
<tr>
<td></td>
<td>Elective</td>
<td>ASTR 24300</td>
</tr>
</tbody>
</table>
Electives

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 21400</td>
<td>Creative Machines and Innovative Instrumentation</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 25800</td>
<td>Astrophysics of Exoplanets</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 28200</td>
<td>Current Topics in Astrophysics</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 28500</td>
<td>Science with Large Astronomical Surveys</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 29001</td>
<td>Field Course in Astronomy and Astrophysics I</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 29002</td>
<td>Field Course in Astronomy and Astrophysics II</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 30100</td>
<td>Stars</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 30300</td>
<td>Interstellar Matter</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 30400</td>
<td>Galaxies</td>
<td>100</td>
</tr>
<tr>
<td>ASTR 33000</td>
<td>Computational Physics and Astrophysics</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 15200</td>
<td>Introduction to Computer Science II</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 15400</td>
<td>Introduction to Computer Systems</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 23500</td>
<td>Introduction to Database Systems</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 23900</td>
<td>Data Visualization</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 28510</td>
<td>Introduction to Scientific Computing</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21200</td>
<td>Physics of the Earth</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22040</td>
<td>Planet Formation in the Galaxy I: From Dust to Planetesimals</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22050</td>
<td>Planet Formation in the Galaxy II: From Planetesimals to Planets</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22060</td>
<td>What Makes a Planet Habitable?</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22200</td>
<td>Geochronology</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 18500</td>
<td>Intermediate Mechanics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22500</td>
<td>Intermediate Electricity and Magnetism I</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22600</td>
<td>Electronics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22700</td>
<td>Intermediate Electricity and Magnetism II</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 23510</td>
<td>Quantum Mechanics II ‡</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 26000</td>
<td>Fluid Dynamics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 26400</td>
<td>Spacetime and Black Holes</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22200</td>
<td>Linear Models and Experimental Design</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22400</td>
<td>Applied Regression Analysis</td>
<td>100</td>
</tr>
<tr>
<td>STAT 24500</td>
<td>Statistical Theory and Methods II</td>
<td>100</td>
</tr>
<tr>
<td>STAT 24510</td>
<td>Statistical Theory and Methods IIa</td>
<td>100</td>
</tr>
<tr>
<td>STAT 25100</td>
<td>Introduction to Mathematical Probability</td>
<td>100</td>
</tr>
<tr>
<td>STAT 25300</td>
<td>Introduction to Probability Models</td>
<td>100</td>
</tr>
<tr>
<td>STAT 27400</td>
<td>Nonparametric Inference</td>
<td>100</td>
</tr>
<tr>
<td>STAT 27850</td>
<td>Multiple Testing, Modern Inference, and Replicability</td>
<td>100</td>
</tr>
</tbody>
</table>

‡ Only students in the BA in Astrophysics (Physics Variant) may claim this course as an elective.

Grading

Students in the major or minor programs offered by the Department of Astronomy and Astrophysics must receive a quality grade of at least C in all courses counting toward major/minor requirements. In addition, students who are majoring in Astrophysics must receive a quality grade of at least C- in prerequisite courses offered by other departments.

Honors

Students who have completed the requirements for the BA or BS in Astrophysics are encouraged to prepare an honors thesis based on their work. To be considered for honors, a student must earn a GPA of 3.5 or higher in the required courses for the major and 3.0 overall (or obtain consent from the assistant chair for academic affairs), and have an approved research project that will be supervised by a faculty member.

Eligible students who wish to be considered for honors will first meet with the academic affairs administrator to obtain guidelines and requirements for this option, followed by a meeting with their research mentor resulting in a plan for the supervision of the research. The student enrolls in ASTR 29900 Honors Thesis in any quarter of their graduation year. A goal of the honors track is to mentor students through the process of preparing research and submitting it for publication. Along the way, students present their research to various groups, including Astronomy and Astrophysics faculty, for feedback and discussion.
MINOR IN ASTRONOMY AND ASTROPHYSICS

The grand narrative of astronomy holds wide popular appeal and lends itself to interdisciplinary study: there is a deep history and cultural context, the night sky is profoundly inspiring and accessible to everyone, and the spirit of exploration is communicated in daily media reports of new discoveries. The minor in Astronomy and Astrophysics was designed for students not majoring in the sciences to cultivate understanding of science as a human endeavor across multiple social, historical, and cultural contexts, and to develop comprehension of the quantitative reasoning that supports a deep conceptual understanding of science.

Students are allowed flexibility in selecting five courses to compose a rigorous program of study according to individual interest. The selection must include at least two courses numbered in the 12000s and at least one in the 18000s. It is possible for a student pursuing the minor to substitute a course numbered in the 20000s for one of the 18000 courses. Students interested in exploring this option must meet with the academic affairs administrator to discuss course selection. **Please note: courses taken to satisfy the general education requirement in the physical sciences may not be counted towards the minor.** Students who satisfy their general education requirement in the physical sciences in Astronomy and Astrophysics may pursue the minor through completing the remaining courses numbered in the 12000s and at least one in the 18000s.

There are no Physics or Mathematics prerequisites for the minor. Courses must be taken for quality grades (no P/F grading). Students must meet with the academic affairs administrator before the end of Spring Quarter of their third year to declare their intention to complete the minor and fill out the College’s Consent to Complete a Minor Program (https://humanities-web.s3.us-east-2.amazonaws.com/college-prod/s3fs-public/documents/Consent_Minor_Program.pdf) form.

STUDY ABROAD PROGRAM

Every Spring Quarter a three-course Astronomy program is offered in Paris, composed from the courses numbered in the 12000s that are offered on campus. This sequence was designed for students not majoring in the sciences but may also be of interest to science majors who want to supplement their work in physics and chemistry with a quarter devoted to the cosmos. In Spring Quarter 2020, the Paris program will offer ASTR 12600 Matter, Energy, Space, and Time, ASTR 12610 Black Holes and ASTR 12620 The Big Bang.

The Astronomy program in Paris satisfies the general education requirement in the physical sciences. Students who have already completed their general education requirement in the physical sciences may count the three courses taken in Paris toward the five required to satisfy the minor in Astronomy and Astrophysics. For details, see the Study Abroad (https://study-abroad.uchicago.edu) page for Paris: Astronomy (http://study-abroad.uchicago.edu/programs/paris-astronomy/).

ASTRONOMY AND ASTROPHYSICS COURSES

ASTR 11901. Physics of Stars: An Introduction. 100 Units.

Understanding how stars work - what makes them shine - is one of the great accomplishments of 20th-century science. The theory of stellar structure allows us to investigate the interiors of stars, even though what we observe is radiation from their outer atmospheres. This theory also helps us determine how old stars are, how they create heavier nuclei from lighter nuclei in their centers, and how they evolve from birth to death, ending as a white dwarf, a neutron star, or a black hole. This course introduces you to the concepts behind and applications of this crucial breakthrough. We will review the physical principles - gravity, pressure, radiation, and how radiation interacts with matter - and apply these principles to further our understanding of stellar structure. We will collect our own measurements of stellar properties, such as the temperatures and luminosities of stars, using robotic telescopes controlled via the internet. Using these and other data, we will test the theory of stellar structure and explore what it can tell us about the universe. While it is not required, students who have taken this course in the past have found it beneficial to bring their own laptops to class if they have them.

Terms Offered: Summer
Prerequisite(s): Open to high school students only.

ASTR 12600. Matter, Energy, Space, and Time. 100 Units.

A comprehensive survey of how the physical world works, and how matter, energy, space, and time evolved from the beginning to the present. A brief survey of the historical development of mathematics, physics, and astronomy leads to a conceptual survey of the modern theory of the physical universe: space and time in relativity; the quantum theory of matter and energy; and the evolution of cosmic structure and composition. The major theme of this course is the understanding of all nature, from the prosaic to the exotic, using powerful quantitative theory grounded in precise experiments. Although quantitative analysis will be an important part of the course, students will not be expected to employ mathematics beyond algebra. (L)
Instructor(s): Erik Shirokoff Terms Offered: Autumn
Equivalent Course(s): PHSC 12600
ASTR 12610. Black Holes. 100 Units.
Black Holes are the most exotic, extreme and paradoxical systems in the universe. They are the densest concentrations of energy, yet they convert all matter that falls in to pure space-time curvature; they radiate more power than anything else, even though most of their radiation is not even made of light; they are mathematically the most perfectly understood of any physical structure, but their enigmatic behavior is still the subject of a violent disagreement among experts that highlights our ignorance of how quantum physics relates to gravity. This course will survey the physics of space and time, the nature of black holes, their effects on surrounding matter and light, the astrophysical contexts in which they are observed, frontier areas of research as quantum gravity and gravitational waves, and the importance of space-time physics to everyday needs such as navigation and energy. The modern theory of space and time, as well as black holes, will be placed in historical context, with special attention to the work of Albert Einstein. Experimental exercises will include direct measurement of the speed of light and gravitational mass, and experience with interferometry. Quantitative analysis will be an important part of the course, but mathematics beyond algebra will not be required. (L)
Instructor(s): Fausto Cattaneo (Summer Quarter); Damiano Caprioli (Autumn Quarter) Terms Offered: Spring Summer. Summer Quarter instructor is Fausto Cattaneo.
Prerequisite(s): PHSC 12600 or PHSC 12700
Equivalent Course(s): PHSC 12610

ASTR 12620. The Big Bang. 100 Units.
The Big Bang model describes the Universe on the largest scales and its evolution from the earliest observationally accessible times through the formation of the complex world we live in today. This powerful framework allows us to interpret a wide range of observations and to make detailed and precise predictions for new experiments. The key motivating observations include the expansion of the Universe and how it has changed with time; the existence of radiation indicating a hot and dense early phase; the abundance of the light elements; and how matter is organized over a wide range of physical scales. The model naturally incorporates dark matter and dark energy, two surprising and poorly understood components that govern the growth of structure over time. The course will explore the history of scientific cosmology and the evidence for the Big Bang model, its consequences for the earliest moments after the Big Bang, and its predictions for the eventual fate of the Universe. Labs will include a hands-on measurement of the relic cosmic microwave background radiation from the early universe and the use of astronomical data to verify key discoveries in the history of Big Bang cosmology. Quantitative analysis will be an important part of the course, but prior experience with mathematics beyond algebra will not be required. (L)
Instructor(s): Rocky Kolb Terms Offered: Winter
Prerequisite(s): PHSC 12600
Equivalent Course(s): PHSC 12620

ASTR 12700. Stars. 100 Units.
Elements such as carbon and oxygen are created in fusion reactions at high temperatures and pressures in the deep interiors of stars, conditions that naturally arise in stars like the Sun. This course will outline the physical principles at work and the history of the development of the key ideas: how nuclear physics and the theory of stellar interiors account for how stars shine, why they live for such long times, and how the heavy elements in their cores are dispersed to form a new generation of stars. Gravity assembles stars out of more diffuse material, a process that includes the formation of planetary systems. The course shows how, taken together, these physical processes naturally lead to the ingredients necessary for the emergence of life, namely elements like carbon, nitrogen, and oxygen, and planets in stable orbits around long-lived stars. The course features quantitative analysis of data; any tools needed beyond pre-calculus algebra will be taught as part of the course. (L)
Instructor(s): Fausto Cattaneo (Summer Quarter); Damiano Caprioli (Autumn Quarter) Terms Offered: Autumn Summer. Summer Quarter instructor is Fausto Cattaneo.
Equivalent Course(s): PHSC 12700

ASTR 12710. Galaxies. 100 Units.
Galaxies have been called island universes, places where stars are concentrated, where they are born, and where they die. The study of galaxies reaches back to the Renaissance; Galileo Galilei first pointed a telescope skyward in 1610 and confirmed a then 2000 year-old Greek conjecture about the nature of our own galaxy -- the Milky Way. This course will use extensive modern observational data from a wide range of telescopes to trace the modern picture for the formation and evolution of galaxies and the stars in them. Galaxies will then be used as markers of yet larger scale structures, in order to explore the influence of gravity over cosmic time. The object of study in this course is galaxies, and the narrative arc traced through that extensive data and understanding will highlight our profound discovery that most of the mass in galaxies (and the Universe as a whole) is in fact an exotic form of matter -- dark matter -- that we cannot directly see. Quantitative analysis will be an important part of the course in both laboratory work and lectures, but mathematics beyond algebra and some geometric understanding will not be required. This course will feature several observationally-oriented labs that will allow students to directly experience how some of the modern understanding of galaxies has arisen. (L)
Instructor(s): Jeffrey McMahon Terms Offered: Winter
Prerequisite(s): PHSC 12600 or PHSC 12700. PHSC 12710 can be taken as the first course in a sequence combined with PHSC 12720.
Equivalent Course(s): PHSC 12710
ASTR 12720. Exoplanets. 100 Units.
The past two decades have witnessed the discovery of planets in orbit around other stars and the characterization of extra-Solar (exo-) planetary systems. We are now able to place our Solar System into the context of other worlds and a surprising conclusion that most planetary systems look nothing like our own. A challenging next step is to find planets as small as the Earth in orbit around stars like the Sun. The architecture of planetary systems reflects the formation of the parent star and its protoplanetary disk, and how these have changed with time. This course will review the techniques for discovery of planets around other stars, what we have learned so far about exoplanetary systems, and the driving questions for the future, including the quest for habitable environments elsewhere. Although quantitative analysis will be an important part of the course, students will not be expected to employ mathematics beyond algebra. (L)
Instructor(s): Leslie Rogers Terms Offered: Spring
Prerequisite(s): PHSC 10800, PHSC 10100, PHSC 12700 or PHSC 12710.
Equivalent Course(s): PHSC 12720

ASTR 13300. Introduction to Astrophysics. 100 Units.
The course is intended for first-year students intending to major in Astrophysics as an introduction to the range of important physical processes that operate in astrophysical environments, and how these govern structures across a wide range of scales, from planets to superclusters to the Universe. Throughout the course, we will see that similar physical principles (gravity, radiation, particle physics) come in at different stages and systems (planets, stars, galaxies, the Universe). We will also incorporate into each class relevant current active research areas in Astrophysics, especially focusing on connection with research in the department. We anticipate a highly interactive class with a large number of group activities, demos and discussions.
Instructor(s): Chihway Chang Terms Offered: Spring
Prerequisite(s): PHYS 13300; may be taken concurrently.

ASTR 18000. The Search for Extraterrestrial Life. 100 Units.
The origin of life is one of the biggest questions of modern science. While substantial progress has been made in understanding how life arose on our planet, such research represents just a single case study in how life originates and evolves. This course covers the search for life beyond Earth from the planets and moons of the Solar System to planets orbiting other stars and intelligent life that may have left its mark on macroscopic scales. The discovery of life beyond Earth would be transformative for our understanding of humanity’s place in the universe. A range of ongoing and planned experiments have the potential to detect or put strong constraints on the existence of life during the next few decades. This class will mix traditional lectures with flipped classroom problem-solving sessions.
Instructor(s): Jacob Bean Terms Offered: Autumn
Equivalent Course(s): PHSC 18000

ASTR 18100. The Milky Way. 100 Units.
Within a largely empty universe, we live in a vast stellar ‘island’ that we call the Milky Way. As we survey the stellar and interstellar components of the Milky Way—the distribution and motions of stars and interstellar gas, and how these dynamic, ever-changing components interact with each other during their life cycles inside the Milky Way—we will follow the path of ancient astronomers, wonder at their mistakes and prejudices, and form our own understanding.
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): PHSC 18100

ASTR 18200. The Origin and Evolution of the Universe. 100 Units.
This course provides a comprehensive introduction to modern cosmology for students wishing to delve deeper into the subject than PHSC 12620 (which is not a prerequisite) but at a similar mathematical level. It will discuss how the fundamental laws of physics allow us to understand the origin, evolution, and large-scale structure of the universe. After a brief review of the history of cosmology, the course will cover the expansion of the universe, Newtonian cosmology, Einstein’s Special and General Relativity, black holes, dark matter, dark energy, the Cosmic Microwave Background radiation, Big Bang nucleosynthesis, the early universe, primordial inflation, the origin and evolution of large-scale structure in the universe, and cosmic surveys that are probing inflation and cosmic acceleration.
Instructor(s): Josh Frieman Terms Offered: Not offered in 2020-2021.
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): PHSC 18200
ASTR 18300. Searching Between the Stars. 100 Units.
With the advent of modern observational techniques (e.g., radio, satellite astronomy), it has become possible to study free atoms, molecules, and dust in the vast space between the stars. The observation of interstellar matter provides information on the physical and chemical conditions of space and on the formation and evolution of stars.
Instructor(s): Al Harper Terms Offered: Spring
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): PSYC 18800, PHSC 18800

ASTR 18400. Origins: From the Big Bang to Human Consciousness. 100 Units.
In this course we will look at the approaches to, data for, and theories of the big transitions in the evolution of the physical universe and the living world.
Instructor(s): Wendy Freedman and Neil Shubin Terms Offered: Autumn
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.

ASTR 18500. From Fossils to Fermi’s Paradox: Origin and Evolution of Intelligent Life. 100 Units.
The course approaches Fermi’s question, ‘Are we alone in the universe?’, in the light of recent evidence primarily from three fields: the history and evolution of life on Earth (paleontology), the meaning and evolution of complex signaling and intelligence (cognitive science), and the distribution, composition and conditions on planets and exoplanets (astronomy). We will also review the history and parameters governing extrasolar detection and signaling. The aim of the course is to assess the interplay between convergence and contingency in evolution, the selective advantage of intelligence, and the existence and nature of life elsewhere in the universe - in order to better understand the meaning of human existence.
Instructor(s): P. Sereno; L. Rogers; S. London Terms Offered: Winter
Prerequisite(s): Third or fourth-year standing
Equivalent Course(s): PSYC 28810, BPRO 28800, BIOS 29142

ASTR 18600. Philosophical Problems in Cosmology. 100 Units.
In this course, we will undertake a comparison of the philosophical underpinnings of the Aristotelian and Copernican cosmologies, including a comparison of mechanistic and teleological approaches to the natural world. The epistemological foundations of the scientific method, in particular as applied to cosmology (from Galileo to the modern context) will be examined, as will positivist vs. realist outlooks on cosmology. (For example, what does science say—or not say—about the inside of a black hole, or the space beyond the Hubble horizon?) We will ponder questions such as: Do the epistemological foundations of science require us to be able to repeat relevant experiments? If so, does this disqualify cosmology as a science? If not, why? Might our universe be part of a computer simulation? What information could possibly convince us that this is true or false?
Instructor(s): Dan Hooper Terms Offered: Autumn
Prerequisite(s): Any two-course 10000-level general education sequence in chemistry, geophysical sciences, physical sciences, or physics.
Equivalent Course(s): HIPS 18800, PHSC 18800

ASTR 18700. Mapping the Heavens: Early Astronomical Surveys. 100 Units.
The first modern systematic surveys of the night sky were accomplished in the first half of the nineteenth century by William, Caroline, and John Herschel, who published catalogs of double stars, star clusters, and small faint patches of light (‘nebulae’) that they discovered using their homemade reflector telescopes. By the late nineteenth century, photographic sensitivity to light was useful for mapping the sky, enabling a transition away from visual observations. Professional astronomers at the time preferred refractor (lens-type) telescopes, but these instruments were unsuitable for the detection of diffuse light. Exceptions included lenses designed for studio portraiture, and a few reflector telescopes, now vastly improved with silver-on-glass mirrors. These technological developments enabled the sky to be mapped photographically starting in the 1880’s, showing detail that was invisible to the eye. This course will cover the technological developments in astronomy, both telescope optics and the photographic process, that enabled sky surveys such as these. The technological background will be presented in the context of the driving scientific questions of the day: what were the surveys intended to do, and what did they actually accomplish? The course is intended for students interested in the history of the astronomical and imaging sciences.
Instructor(s): Rich Kron Terms Offered: Winter
Equivalent Course(s): HIPS 18900

ASTR 20500. Introduction to Python Programming with Applications to Astro Statistics. 100 Units.
The course will introduce students to programming using Python language and will review basic code elements and data structures commonly used in Python. It will introduce Python libraries, such as numpy and scipy and the concepts of vector operations that greatly aid scientific computations with Python. Plotting of graphs and data using Matplotlib library will also be introduced. Programming techniques will be illustrated and applied to basic statistical concepts that are used in astronomical research.
Instructor(s): Andrey Kratsov Terms Offered: Autumn
Prerequisite(s): Placement into MATH 15100 or higher, or by consent.
ASTR 21100. Computational Techniques in Astrophysics. 100 Units.
This course will introduce basic computational techniques most often used in astronomical research, such as interpolation, transforms, smoothing, numerical differentiation and integration, integration of ordinary differential equations, and Monte Carlo methods, and elements of basic computer algorithms, data structures, and parallel programming using Python as the main course programming language with heavy use of NumPy, SciPy, and Matplotlib packages. Practical examples where these numerical techniques are applied will be covered via homework and in class exercises using real-world astronomical problems and results of recent papers with emphasis on implementing the algorithms from scratch. The course will cover the access to astronomical archival data, and how to search it efficiently, focusing specifically on the Sloan Digital Sky Survey, but with introduction to other data sets. Machine learning methods will be introduced to illustrate how large data sets can be mined for interesting information.
Instructor(s): Andrey Kravtsov Terms Offered: Spring
Prerequisite(s): ASTR 20500 or CMSC 12100 or consent of instructor.

ASTR 21200. Observational Techniques in Astrophysics. 100 Units.
This course will prepare students in methods that will be used in their independent research by introducing observation and analysis techniques in a field of astrophysics chosen by the instructor. Students will learn basics of astronomical instrumentation and will apply that knowledge in a practical context (for example, using an on-campus telescope or telescopes controlled robotically from campus). The process of data reduction and calibration will be illustrated, leading to the extraction of scientifically meaningful results.
Instructor(s): Al Harper Terms Offered: Winter
Prerequisite(s): ASTR 13300 or consent of instructor.

ASTR 21400. Creative Machines and Innovative Instrumentation. 100 Units.
An understanding of the techniques, tricks, and traps of building creative machines and innovative instrumentation is essential for a range of fields from the physical sciences to the arts. In this hands-on, practical course, you will design and build functional devices as a means to learn the systematic processes of engineering and fundamentals of design and construction. The kinds of things you will learn may include mechanical design and machining, computer-aided design, rapid prototyping, circuitry, electrical measurement methods, and other techniques for resolving real-world design problems. In collaboration with others, you will complete a mini-project and a final project, which will involve the design and fabrication of a functional scientific instrument. The course will be taught at an introductory level; no previous experience is expected. The iterative nature of the design process will require an appreciable amount of time outside of class for completing projects. The course is open to undergraduates in all majors (subject to the pre-requisites), as well as Master's and Ph.D. students.
Instructor(s): Stephan Meyer and Erik Shirokoff Terms Offered: Winter
Prerequisite(s): PHYS 12200 or PHYS 13200 or PHYS 14200; or CMSC 12100 or CMSC 12200 or CMSC 12300; or consent of instructor.
Equivalent Course(s): ASTR 31400, PSMS 31400, CHEM 21400

ASTR 23900. Physics of Galaxies. 100 Units.
This course will provide a comprehensive introduction to galaxies and the interstellar medium and will examine the physical processes involved in their structure and evolution. Topics will include the stellar content of galaxies and the dynamics of stars within galaxies, the physical state of the interstellar medium, central supermassive black holes and power generation in active galactic nuclei, what can be learned about the distribution of mass from gravitational lensing, and processes that shape the relative distributions of dark matter and baryonic matter.
Instructor(s): Irina Zhuravleva Terms Offered: Winter
Prerequisite(s): ASTR 24100 or CHEM 26100 or PHYS 23400.

ASTR 24100. The Physics of Stars. 100 Units.
This course develops the physical theory of the internal structure of stars and how their structure changes with time. The material illustrates how to build model stars based on these physical principles and covers observational constraints on these models, such as the neutrino flux from the core of the Sun. Topics include supernovae and the end states of stars-white dwarfs, neutron stars, and black holes.
Instructor(s): Robert Rosner Terms Offered: Winter
Prerequisite(s): ASTR 25400 or PHYS 23400 or consent of instructor.

ASTR 24300. Cosmological Physics. 100 Units.
This course will provide a comprehensive introduction to the principal topics in cosmology, including theoretical and observational foundations. Key topics will include the expansion of the Universe, dark matter and energy, cosmic microwave background, hot Big Bang, and the origin and evolution of structure.
Instructor(s): Wayne Hu Terms Offered: Spring
Prerequisite(s): ASTR 24100 or CHEM 26100 or PHYS 23400. PHYS 27900 recommended.
ASTR 25400. Radiation Processes in Astrophysics. 100 Units.
Most of what we know about the Universe comes from detection of electromagnetic radiation emitted by individual sources or by diffuse media. Once we understand the processes by which the radiation was created and the processes by which the radiation is scattered or modified as it passes through matter, we can address the physical nature of the sources. The physics of radiation processes includes electricity and magnetism; quantum mechanics and atomic and nuclear structure; statistical mechanics; and special relativity.
Instructor(s): Fausto Cattaneo Terms Offered: Autumn
Prerequisite(s): ASTR 13300 and PHYS 23400 required for students majoring in Astrophysics.

ASTR 25800. Astrophysics of Exoplanets. 100 Units.
Extrasolar planets, a.k.a. exoplanets, are planets orbiting other stars. First definitively detected in the mid 1990s, the planet count has rapidly expanded and their physical characterization has sharpened with improved observational techniques. Theoretical studies of planetary formation and evolution are now attempting to understand this statistical sample. The field also aspires to address questions about life in the universe. This course emphasizes hands-on activities, like working with real astronomical data to find and characterize exoplanets. Topics are the radial velocity, transit, and other discovery and characterization techniques; statistical distributions of known planets; comparisons among planet structure and planetary system types; formation in a protoplanetary disk and subsequent dynamical evolution; the goal of finding life on an exoplanet; colonization of exoplanets; and the Fermi paradox.
Instructor(s): Jacob Bean and Daniel Fabrycky Terms Offered: Spring
Prerequisite(s): PHYS 15400, or consent of instructor. Recommended for third- and fourth-year students majoring in Physics or the Geophysical Sciences, or students who have completed two quarters of Calculus.
Equivalent Course(s): GEOS 32080, ASTR 35800

ASTR 28500. Science with Large Astronomical Surveys. 100 Units.
The last several years have seen a veritable explosion of novel astronomical survey programs covering large areas of sky with unprecedented sensitivity. This course will explore the wide variety of science that can be done with surveys like the Sloan Digital Sky Survey, the Dark Energy Survey, the Gaia satellite, and the upcoming Large Synoptic Survey Telescope. Science topics will include our solar system, our Galaxy, the Local Group, distant galaxies, and cosmological measurements of our Universe. We will familiarize ourselves with the hardware and software components of astronomical surveys, before diving into hands-on analysis of public data sets. Students will learn computational and statistical techniques for analyzing large astronomical data sets.
Instructor(s): Alex Drlica-Wagner Terms Offered: Spring
Prerequisite(s): Third- or fourth-year standing in the College and completion of intermediate-level courses in the Physical Sciences; or by consent of instructor.

ASTR 29001. Field Course in Astronomy and Astrophysics I. 100 Units.
In this two-quarter course students will explore an area of astrophysical research through weekly seminars in preparation for a four-night visit to an observatory during the spring break. In the second quarter of the course students will analyze data collected during their observing experience and will collaborate to produce a single paper similar in format to scientific papers published in professional journals. Students must enroll in both ASTR 29001 and ASTR 29002.
Instructor(s): Michael Gladders Terms Offered: Winter
Prerequisite(s): Open to third-year students majoring in Astrophysics who have completed ASTR 13300, ASTR 21200 and ASTR 29800.

ASTR 29002. Field Course in Astronomy and Astrophysics II. 100 Units.
In this two-quarter course students will explore an area of astrophysical research through weekly seminars in preparation for a four-night visit to an observatory during the spring break. In the second quarter of the course students will analyze data collected during their observing experience and will collaborate to produce a single paper similar in format to scientific papers published in professional journals. Students must enroll in both ASTR 29001 and ASTR 29002.
Instructor(s): Michael Gladders Terms Offered: Spring
Prerequisite(s): ASTR 29001

ASTR 29700. Participation in Research. 100 Units.
Students are assigned to work in the research group of a member of the faculty. Participation in research may take the form of independent work on a small project or assistance to an advanced graduate student or faculty member in his or her research.
Instructor(s): Rich Kron Terms Offered: Autumn Spring Summer Winter
Prerequisite(s): Third- or fourth-year standing and consent of instructor. Students must submit a completed Reading and Research Course Form to the Academic Affairs Administrator in Astronomy and Astrophysics before instructor consent will be given.
Note(s): Students must arrange with instructor in advance of the start of the term. Students are required to submit the College Reading and Research Course Form. Available for either quality grades or for P/F grading. Students may register for this course for as many quarters as they wish; they need not work with the same faculty member each time.
ASTR 29800. Undergraduate Research Seminar. 100 Units.
In this course students will engage with various scientific practices to prepare them for participation in research. Students will critically analyze research presented in popular and scholarly scientific literature and practice computational, statistical, and observational techniques to explore astrophysical problems. The course will emphasize student-led discussions and interactive presentations to synthesize previous coursework and strengthen scientific thinking and communication skills. Guest lectures by members of research groups will highlight projects undertaken by faculty in the Astronomy and Astrophysics Department to acquaint students with possibilities for research participation.
Instructor(s): Clarence Chang Terms Offered: Spring
Prerequisite(s): ASTR 13300 and ASTR 20500 or CMSC 12100; or consent of instructor. ASTR 21200 recommended.
Note(s): Intended for students in the Astrophysics Major program.

ASTR 29900. Honors Thesis. 100 Units.
ASTR 29900 Honors Thesis is an independent research course, supervised by a faculty member in the Department of Astronomy and Astrophysics, in which the student either contributes to a faculty research project or engages in an approved independent research project. Eligible students enroll in ASTR 29900 for one quarter during their fourth year. Students intending to complete the Honors Thesis must meet with the Director of Undergraduate Studies in Astronomy and Astrophysics before the third week of Autumn Quarter to obtain Guidelines for the Honors Thesis Course and complete the Honors Thesis Form.
Instructor(s): Rich Kron Terms Offered: Autumn Spring Winter
Prerequisite(s): Open to students who are majoring in Astrophysics with fourth-year standing. The student must earn a GPA of 3.50 or higher in the required courses for the Major and 3.0 overall, or obtain consent from the Assistant Chair for Academic Affairs, and have an approved research project that will be supervised by a faculty member. Students are required to submit the College Reading and Research Course Form to the Academic Affairs Administrator in Astronomy and Astrophysics in the quarter in which they enroll in the course.
Note(s): Students intending to complete the Honors Thesis must meet with the Director of Undergraduate Studies before the third week of Autumn Quarter to obtain Guidelines for the Honors Thesis Course and complete the Honors Thesis Form.