Biological Sciences

The General Education Requirement in the Biological Sciences

All students are required to complete at least two quarters of Biological Sciences course work to satisfy the General Education requirement in the Biological Sciences. The goal is to provide students of all majors and academic interests with a broad foundational understanding of biology and an opportunity to focus on a specific area of interest within the discipline. The requirement should be completed by the end of the second year.

Most students choose one of the following options to meet the General Education requirement in the Biological Sciences. For other options, see Specific General Education Requirement for Certain Majors.

1. A two-quarter General Education Sequence for non–Biological Sciences majors. Students choose one of two options:
 - BIOS 10130 Principles of Biology or BIOS 10140 Inquiry-based Exploration of Biology followed by any Topics course (course numbers BIOS 11125-BIOS 16120 and BIOS 27721-27723)
 - A two-quarter sequence BIOS 10501 Systems of the Human Body - BIOS 10500 Metabolism and Exercise or BIOS 10602 Multiscale Modeling of Biological Systems I - BIOS 10603 Multiscale Modeling of Biological Systems II

 Note: Students cannot receive credit for both BIOS 10130 Principles of Biology and BIOS 10140 Inquiry-based Exploration of Biology.

2. The first two courses in the Health Professions Preparation Sequence for Non-Majors. This sequence is designed for students interested in completing the requirements for application to graduate schools in the health professions but not majoring in Biological Sciences or Biological Chemistry. For students who take the whole sequence (BIOS 20170 Microbial and Human Cell Biology through BIOS 20175 Biochemistry and Metabolism), BIOS 20170 and BIOS 20171 satisfy the general education requirement in the biological sciences.

3. The first two courses in a Fundamentals Sequence for Biological Sciences majors: BIOS 20153 Fundamentals of Ecology and Evolutionary Biology and BIOS 20151 Introduction to Quantitative Modeling in Biology. Note: Non-majors may not use BIOS 20151 as a topics course.

4. Completion of three quarters of the Advanced Biology Fundamentals Sequence. Students with a score of 4 or 5 on the AP Biology test who complete the first three quarters of an Advanced Biology Fundamentals Sequence will be awarded a total of two quarters of credit to be counted toward the general education requirement in the biological sciences and three quarters of credit for Biological Sciences Fundamentals courses. For more information about the Advanced Biology Fundamentals Sequence, see the Biological Sciences Program of Study page in this catalog.

Advanced Placement Credit

For students who do not plan to prepare for the health professions or pursue a major that requires specific courses for the general education requirement, a score of 4 or 5 on the AP Biology test confers credit for BIOS 10130 Principles of Biology or BIOS 10140 Inquiry-based Exploration of Biology. These students complete the general education requirement in the Biological Sciences with either one or two Topics courses, depending on how the requirements in the mathematical and physical sciences are met; students should contact their College adviser for details.

General Education Sequences for Non–Biological Sciences Majors

BIOS 10130. Principles of Biology. 100 Units.

What is life? How does it work and evolve? This course uses lectures, student-centered interactive learning in the lab, assigned readings from both the popular press and primary scientific literature, and directed writing exercises to explore the nature and functions of living organisms, their interactions with each other, and their environment.

Instructor(s): Staff Terms Offered: Autumn Spring Summer Winter

Multiple sections of BIOS 10130 Principles of Biology are taught throughout the year. Sections are taught from a different perspective based upon the specialty of the instructor. Students should register for the section that best suits their interests based upon the descriptions below:

A. Microbes and Immunity. This section covers the most basic concepts in biology, such as life, macromolecules, cells, energy, metabolism, evolution, and genomics, as well as human anatomy and physiology, drawing examples from microbiology and immunology to tie these basic concepts together. The impact of our interactions with microorganisms in our evolution is highlighted in many ways. Hands-on laboratories, readings, and discussion sessions complement lectures. B. Fineschi. Autumn, Winter, Spring. L.

B. Ecology and Evolution. This course focuses on the interaction of organisms with their environment and evolutionary processes that lead to diversity and adaptation. We will examine biological processes at the cellular
BIOS 10140. Inquiry-based Exploration of Biology. 100 Units.

In this course students will be able to conduct their own research projects to experience how biologists frame questions and test hypotheses. This inquiry-based approach permits students to learn fundamental biological principles while carrying out scientific experiments and expanding our knowledge of living systems. Classes will take place in the lab, integrating lectures, discussions, and experiments in active sessions, thus eliminating the separation between theory and practice. Students will also have an opportunity to develop communication skills during the quarter, presenting their proposals and results to their peers and instructors. Each course instructor will focus their section on a different major problem in the biological sciences that will frame the students’ research questions.

Instructor(s): Staff
Terms Offered: Autumn Spring Winter
Note(s): Equivalent to BIOS 10130.

Multiple sections of BIOS 10140 Inquiry-based Exploration of Biology are taught throughout the year. Sections are taught from a different perspective based upon the specialty of the instructor. Students should register for the section that best suits their interests based upon the descriptions below:

A. Neurobiology. How do genetics and environment influence the working of the brain? Embedded within this Grand Challenge are questions central to understanding the biological basis of organismal behavior in a changing environment. The answers to these questions have significant implications for human health and society. This course aims to explore this Grand Challenge by examining the genetic, neurobiological, and environmental mechanisms shaping complex behaviors. Through the development of an inquiry-based research project, complemented by short lectures and discussions of the scientific literature, students will be introduced to fundamental biological principles, the logic of scientific reasoning and experimental design, and methods for collecting, evaluating, and communicating scientific evidence. M. McNulty. Autumn. Spring. L.

B. Microbiology. Human beings are an ecosystem, with multiple types of microbes living in various niches within the human body. Together, these microbes form our “microbiomes.” The microbiome has profound and yet poorly understood impacts on human health. How is our microbiome established, and how does it change in response to the chemicals in our environments? Using gut bacteria grown in the lab, we will explore responses of individual bacteria and bacterial communities to their dynamic environment, focusing on the changes elicited by the foods and chemicals that we eat. Foods alter the dynamics of the bacteria that inhabit our bodies, particularly in our guts. The foods we eat contain nutrients, microbes (some pathogenic), and a range of chemicals with natural antimicrobial properties. Through guided and original research projects, students will gain an insight into the effects of diet on the microbiome, as well as training in scientific reasoning, experimental design, and methods for collecting, evaluating, and communicating scientific data. N. Bhasin. Spring. L.

C. Ecology. Biodiversity encompasses all different biological organisms in our planet, from viruses, microorganisms, plants, fungi, invertebrates, and vertebrates. Interactions among these organisms form a complex and dynamic network crucial for our planet. How does urbanization, a process transforming ecosystems all across our planet, affect biodiversity? This fundamental question has been poorly studied. Specifically, estimations of species diversity in city habitats and characterization of urban biological communities are central to our understanding of how urbanization impacts plant pollination, water filtration, waste decomposition, and other critical ecological processes. In this course, students will develop their own research project exploring components of the biodiversity in our neighborhood, e.g., invertebrate or plant communities, and their interactions. Students will identify local habitats, collect data and specimens to document species diversity, and address research questions regarding local communities, such as: Do natural areas have more or less diversity than developed areas? Or, is the number of exotic species greater, equal, or smaller than native species in parks around our neighborhood? During the course, students will review fundamental biological concepts through analysis of the DNA and genetic information of the organisms they collect, and through observations of their cells and tissues. Students will also learn about their reproductive mechanisms, search for information about their evolution, and explore their populations, trophic networks, and community structures. Finally, this course will provide students with an opportunity to experience the process of scientific research, allowing them to develop their own scientific questions, test hypotheses, identify legitimate sources of information, and analyze data. O. Pineda. Autumn. Winter. L.

D. Cell and Developmental Biology. This course asks the fundamental question: Why are some organisms able to regenerate tissues, organs, and body parts while others (like us) cannot? This course will show how scientists probe this question by using a lab model animal with incredible regenerative capacity: planaria. In this system we can ask how single cells lead to complex organisms with multilite tissue types, what happens in the case of injury or removal of those tissues, and what genes are required for the repair and regeneration of tissues. Students will develop their own research questions and propose their own experiments designed to answer those questions. Throughout this process, students will learn about fundamental principles in biology, experimental
design and analysis, and scientific communication, which will culminate in writing and presenting their own research proposal. A. Brock. Winter. L.

E. Developmental Biology and Aging. Why do humans grow old, and is death inevitable? In this course we will explore the causes of aging and age-related phenotypes and investigate whether aging is genetically programmed, an unavoidable effect of metabolism, or an evolutionary consequence of natural selection. Students will explore topics including gene regulation, cell function, developmental biology, regeneration, aging, and evolution in three-hour sessions that combine short lecture segments, group work, discussion, and hands-on research. Experimental work will focus on a model system: a small worm named C. elegans that has been used by researchers to probe how cells and organisms age, and whether lifespan can be increased. Students will propose a research question concerning lifespan extension of C. elegans and will design their own experimental protocol to test their hypothesis using microscopy, PCR, sequence analysis, and statistics, and communicate their findings to the class in the form of a presentation P. Smith. Autumn, Winter. L.

F. Microbiology. Infectious disease and antimicrobial resistance to therapies have had a tremendous impact on humanity. With so many pathogens that can harm humans, including certain bacteria, viruses, fungi, and protists, this begs the fundamental question: Can humans ever be free from infectious disease? Despite the many technological and medical advances in the last century, humans have been successful in eradicating only two infectious diseases: smallpox (human) and rinderpest (cattle). Why have we not been more successful? What approaches do we currently have and how effective are they? What approaches should we strive for? In this course, students will learn about infectious diseases, the pathogens that cause them, and the phenomenon of antimicrobial resistance. The course will dive into the characteristics of these pathogens and what makes them unique. In groups, students will undertake a research project focused on the theme of antibiotic resistance. In addition, students will study how antimicrobials examining antibiotic resistance and how the evolution of resistance. Within the course, students will learn about the various strategies that pathogens have for survival, as well as how evolutionary mechanisms and environment have influenced these strategies. Complemented with lectures, students will learn about the scientific method, develop and test hypotheses, navigate scientific literature, and analyze data. R. Bednarczuk. Autumn. Winter. L.

G. Sex Differences and Dimorphism. How do chromosomal and/or hormonal differences between the sexes influence behavior? Can life history, social interactions, or environmental exposures modulate behavioral differences between males and females of a species? Sex is a fundamental variable that is often disregarded in basic and biomedical research. Across many disciplines, including neuroscience and pharmacology, we risk drawing invalid conclusions when we extrapolate data from one sex to another. We will use Drosophila as a model to explore how chromosomal sex may influence both reproductive and non-reproductive behaviors, and discuss the evolutionary foundations of such differences. Students will develop their own research project and carry out novel experiments designed to test their hypotheses. Throughout this process, students will learn about fundamental principles in biology and the logic of scientific reasoning and experimental design, and will develop strategies to support the effective collection, analysis, and communication of scientific information. Student engagement in inquiry will be complemented by lectures and critical examination and discussion of the scientific literature. C. Martineau. Winter. L.

H. Genetics of Plants. How can we feed the world as the climate changes and plants are exposed to more stressful growing conditions? A possible approach is to improve the genetics of our crop plants, but first we need to identify the genes that could help! This course will use the model plant Arabidopsis thaliana to understand the genetics behind abiotic stress responses in plants. By exploring the natural variation in Arabidopsis populations, we can try to identify the genes that allow some plants to survive in stressful conditions. Working together, the class will conduct a large-scale genome analysis after which students will work in groups to conduct their own genetic study, report their findings, and propose new experiments. Throughout the course, students will learn about fundamental principles in biology and experimental design while gaining experience with genetic analysis, plant biology, and scientific communication K. Butler. Spring. L.

I. Evolution and Ecology. As the Earth’s climate changes, how will it affect organisms? To answer this question, we can manipulate and analyze large data sets available online. We will dive in to fundamental principles of biology to see how the physiology, ecology, and genetic make-up of populations are likely to be affected by changing climate, and how organism responses to change will feed back and affect the climate. We will read both popular science and primary sources to understand how scientists approach these questions. While developing spreadsheet and data analysis skills, we can investigate the responses of organisms to changing climate, how species interact with each other and the abiotic environment, and what the limits to these responses will be. Students will develop a research question and find or gather data from online sources to test hypotheses relevant to their question, then present their results in a poster session. A. Hunter. Autumn, Spring. L.

TOPICS COURSES FOR NON-MAJORS

The courses that follow have a prerequisite of BIOS 10130 Principles of Biology, or BIOS 10140 Inquiry-based Exploration of Biology, or a score of 4 or 5 on the AP Biology test. Attendance is required at the first class to confirm enrollment. Students who choose to complete only one general education course in the mathematical sciences may take a second Topics course as part of the general education requirements.
BIOS 11125. Life Through a Genomic Lens. 100 Units.
The implications of the double helical structure of DNA triggered a revolution in cell biology. More recently, the technology to sequence vast stretches of DNA has offered new vistas in fields ranging from human origins to the study of biodiversity. This course considers a set of these issues, including the impact of a DNA perspective on the legal system, on medicine, and on conservation biology.
Instructor(s): A. Turkewitz, M. Nobrega Terms Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.
Equivalent Course(s): ENST 12402

BIOS 11136. Introduction to Complex Trait Genetics. 100 Units.
The goal of the course is to provide a basic understanding of how genetics affect complex diseases, like asthma and depression. We will cover differences between complex disorders and Mendelian disorders, like Huntington’s. We will summarize how geneticists use big data and machine learning to learn about the biology of complex diseases. We will also cover genetic predictions for complex traits, including their potential value for disease prevention and their potential peril for traits like education attainment. Students will read news articles and accessible excerpts from the literature, and will learn how to interpret genetics results in popular media and to understand precision treatment.
Instructor(s): X. Liu and A. Dahl Terms Offered: Autumn
Prerequisite(s): BIOS 10130 or BIOS 10140; NO BIOLOGICAL SCIENCES MAJORS AND NO NON-BIOLOGY PRE-MEDS, except by petition.

BIOS 11137. Phenotypes and Genotypes. 100 Units.
This course discusses how visible and functional characteristics we see in ourselves can be traced back to the sequences within our genomes. We will look at genetics through different lenses, starting with the gene as a unit of inheritance and expanding to the gene as a protein-coding unit. Additionally, we will look at different disease phenotypes and trace their molecular basis to the chromosomal or sequence level. We will also discuss more complicated traits that are governed by multiple genes. Through all of this, we will cover topics including classical and modern approaches to genetics, genomics, genetic testing, evolution, and emerging technologies. We recommend you use the suggested textbook on human heredity, but we will provide readings from popular and scientific press to complement the textbook. This course will be a traditional, lecture-based course with assessments based on exams and problem sets.
Instructor(s): A. Brock; B. Fineschi Terms Offered: Spring
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS AND NO NON-BIOLOGY PRE-MEDS, except by petition.

BIOS 11140. Biotechnology for the 21st Century. 100 Units.
This course is designed to provide a stimulating introduction to the world of biotechnology. Starting with an overview of the basic concepts of molecular biology and genetics that serve as a foundation for biotechnology, the course will segue into the various applied fields of biotechnology. Topics will include microbial biotechnology, agricultural biotechnology, biofuels, cloning, bioremediation, medical biotechnology, DNA fingerprinting and forensics. The goal of this course is to provide students with an appreciation of important biotechnology breakthroughs and the associated bioethics issues.
Instructor(s): N. Bhasin Terms Offered: Autumn Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 11142. Forensic Biology: “Who done it?” - DNA tells the story. 100 Units.
This course is designed to introduce the field of forensic biology to those with an introductory biology background. Starting with a brief overview of relevant basic concepts of molecular biology, genetics, and inheritance patterns, the course will explore the crucial role played by individuals’ unique DNA in precisely solving mysteries of missing people and crimes. This course will combine theoretical knowledge with hands-on experimentation to provide a comprehensive understanding of forensic biology with a focus on DNA analysis. In this course, we will also cover adjacent topics such as identity-by-descent and the use of non-human DNA in Forensics, and also expand on the legal and ethical implications surrounding this form of investigation. Upon completion, students will gain a comprehensive understanding of DNA analysis in forensic investigations, including the limitations in current practice. They will be empowered to contribute to the enhancement of criminal justice and public safety policies and guidelines.
Instructor(s): N. Bhasin Terms Offered: Summer. September Term.
Prerequisite(s): BIOS 10130 or 10140. NO BIOLOGICAL SCIENCES MAJORS AND NO NON-BIOLOGY PRE-MEDS, except by petition.

BIOS 12114. Nutritional Science. 100 Units.
This course examines the underlying biological mechanisms of nutrient utilization in humans and the scientific basis for setting human nutritional requirements. The relationships between food choices and human health are also explored. Students consider how to assess the validity of scientific research that provides the basis for advice about how to eat healthfully. Class assignments are designed to help students apply their knowledge by critiquing their nutritional lifestyle, nutritional health claims, and/or current nutrition policy issues.
Instructor(s): P. Strieleman Terms Offered: Autumn Spring Summer
BIOS 12115. Responses of Cardiopulmonary System to Stress. 100 Units.
This course is designed to provide students an overview of basic concepts involved in the functioning of cardiopulmonary vascular systems. Special emphasis will be given to different regulatory mechanisms working at the cell, tissue and organ levels to control the systems functioning during stress conditions. We also discuss recent topics related to molecular basis of adaptation and drugs designed to treat mal-adaptive changes taking place in the heart and lungs (vessels) subjected to various-types of pathological stresses. Instructors, who are both actively engaged in research to understand molecular basis of cardiopulmonary vascular diseases, take this course beyond the knowledge of standard textbook content.
Instructor(s): M. Gupta, Y. Fang Terms Offered: Spring
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 12117. The 3.5 Billion Year History of the Human Body. 100 Units.
This course looks at the structure, function, and deep history of the human body. Each major organ and system of the body is explored from perspectives of anatomy, paleontology, and developmental genetics to reveal the deep history of the body and our connections to the rest of life on the planet.
Instructor(s): N. Shubin Terms Offered: Spring
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.
Note(s): Due to significant overlap of course content, students may register for only one of PHSC 11000, BIOS 12117, or GEOS 13900/BIOS 13123

BIOS 12121. Physiology in Extreme Environments. 100 Units.
Humans live nearly everywhere, including arid deserts, the tops of mountains, and frigid arctic tundra. We have also expanded our reach to include the bottom of the ocean and the International Space Station. Our bodies’ ability to make physiologic adaptations allows us to survive in each of these environments. Physiology in Extreme Environments will enhance your understanding of how your body reacts to stressors such as high altitude, diving, spaceflight, isolation, and more. Discussion topics will include a review of the cardiovascular and respiratory systems, exercise physiology, and cerebral blood flow. We will also discuss the physiology of sleep and fatigue. This knowledge will then be used to explain how life support environments work and how we survive in dangerous environments.
Instructor(s): K. Ruskin, A. Garcia, A. Clebone Terms Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13111. Natural History of North American Deserts. 100 Units.
This lecture course focuses on the ecological communities of the Southwest, primarily on the four subdivisions of the North American Desert, the Chihuahuan, Sonoran, Mohave, and Great Basin Deserts. Lecture topics include climate change and the impact on the flora and fauna of the region; adaptations to arid landscapes; evolutionary, ecological, and conservation issues in the arid Southwest, especially relating to isolated mountain ranges; human impacts on the biota, land, and water; and how geological and climatic forces shape deserts.
Instructor(s): E. Larsen Terms Offered: Spring
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13112. Natural History of North American Deserts; Field School. 100 Units.
This lecture/lab course is the same course as BIOS 13111, but includes a lab section preparatory to a three-week field trip at end of Spring Quarter, specific dates to be announced. Our goal in the lab is to prepare proposals for research projects to conduct in the field portion of this course. Field conditions are rugged. Travel is by fifteen-passenger van. Lodging during most of this course is tent camping on developed campsites.
Instructor(s): E. Larsen Terms Offered: Spring
Prerequisite(s): Consent of instructor. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13123. Biological Evolution. 100 Units.
This course is an introduction to evolutionary processes and patterns in present-day organisms and in the fossil record and how they are shaped by biological and physical forces. Topics emphasize evolutionary principles. They include DNA and the genetic code, the genetics of populations, the origins of species, and evolution above the species level. We also discuss major events in the history of life, such as the origin of complex cells, invasion of land, and mass extinction. This course is part of the College Course Cluster program: Climate Change, Culture and Society. (L)
Instructor(s): D. Jablonski Terms Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140
Note(s): No Biological Sciences majors except by petition to the BSCD Senior Advisers. Due to significant overlap of course content, students may register for only one of PHSC 11000, BIOS 12117, or GEOS 13900/BIOS 13123. Students using this course for credit in the GEOS or ENSC major register for GEOS 27300; additional work, including a term paper, will be required.
BIOS 13128. Plant-Animal Interactions. 100 Units.
In this course we investigate the ecological interactions between plants and animals, and their evolution. Through readings and discussion we explore herbivory and mutualisms (pollination, seed dispersal). How do plants defend themselves against herbivores? How have plants and their seed dispersers, pollinators, and predators co-evolved?
Instructor(s): A. Hunter Terms Offered: Autumn Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13132. Ecology in the Anthropocene. 100 Units.
This course emphasizes basic scientific understanding of ecological principles that relate most closely to the ways humans interact with their environments. It includes lectures on the main environmental pressures, notably human population growth, disease, pollution, climate change, habitat destruction, and harvesting. We emphasize the ongoing impacts on the natural world, particularly causes of population regulation and extinction and how they might feedback on to humans. Discussion required.
Instructor(s): T. Price Terms Offered: Autumn
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.
Equivalent Course(s): ENST 13132, CEGU 13132

BIOS 13134. It’s Not Easy Being Green: An Introduction to Plant Biology. 100 Units.
During this course students will obtain a broad tour of plant biology as we explore the evolution, reproduction, physiology, genetics, and ecology of plants. We will also explore the importance of plants to human society. Emphasis will also be placed on understanding scientific research - from experimental design to data analysis and future implications. The course will feature a selection of readings from diverse perspectives about plants, their biology, and their cultural significance. This course will encourage students to use their strengths and interests to explore the biology and significance of plants and will allow flexibility to explore student questions and curiosities.
Instructor(s): K. Butler Terms Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13140. The Public and Private Lives of Insects. 100 Units.
This course examines the ecology and evolution of insects, from their early evolution over 350 million years ago to their adaptations that allow them to exploit nearly every habitat on earth and become the most diverse animal group on the planet. We explore the basic biology of insects that have allowed them to become the largest group of animals on the planet, making up approximately 1.5 million of the 2 million described species.
Instructor(s): E. Larsen Terms Offered: Autumn Spring. Spring quarter, only in even years
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 13142. From Fossils to Fermi’s Paradox: Origin and Evolution of Intelligent Life. 100 Units.
The course approaches Fermi’s question, “Are we alone in the universe?,” in the light of recent evidence primarily from three fields: the history and evolution of life on Earth (paleontology), the meaning and evolution of complex signaling and intelligence (cognitive science), and the distribution, composition and conditions on planets and exoplanets (astronomy). We also review the history and parameters governing extrasolar detection and signaling. The aim of the course is to assess the interplay between convergence and contingency in evolution, the selective advantage of intelligence, and the existence and nature of life elsewhere in the universe - in order to better understand the meaning of human existence.
Instructor(s): P. Sereno; L. Rogers; S. London Terms Offered: Not offered in 2024-2025
Prerequisite(s): PQ: Third or fourth-year standing. This course does not meet the requirements of the Biological Sciences major. Prerequisite(s) for BIOS 13142 only: BIOS 10130 or BIOS 10140. For BIOS 13142: NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.
Equivalent Course(s): ASTR 18700, PSYC 28810, BPRO 28800

BIOS 14112. Workings of the Human Brain: From Brain to Behavior. 100 Units.
How do humans see, smell, hear, feel, think, and learn? This course examines how the brain generates behavior. Topics covered include the organization of the nervous system, the mechanisms by which the brain translates external stimuli into electrical and chemical signals to initiate or modify behavior, and the neurological bases of learning, memory, sleep, cognition, drug addiction, and neurological conditions. Each week, we will begin with a review of the microscopic workings of the cell and basic neuroanatomy and functional physiology and continue to a more macroscopic study of the senses, behavior, higher order mental processes, and psychological disorders. The goal of the course is to provide students with a basic understanding of how fundamental brain processes contribute to cognitive states and basic human behavior, as well as encourage further study in the "brain and behavioral sciences."
Instructor(s): M. McNulty, M. Tan Terms Offered: Autumn Summer
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS, NEUROSCIENCE, OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 14117. The Science and Art of Vision. 100 Units.
Why does a work of art evoke certain perceptual sensations or emotions? To what degree are these experiences shared or unique between individuals? This course will explore how scientific inquiry has contributed to our understanding of visual system function and our perception of the visual arts. We will evaluate hypotheses about the evolution of human vision and the impact of genetic and structural anomalies on perception. We will investigate how mechanisms of visual information processing influence the perception of art and how artists can exploit techniques that interface with the visual system to create striking impressions. The goal of this course is to enhance student appreciation for both the neuroanatomical and subjective bases for our experience of the visual arts.
Instructor(s): C. Martineau Terms Offered: Autumn Spring
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS, NEUROSCIENCE MAJORS, OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 15115. Cancer Biology: How Good Cells Go Bad. 100 Units.
This lecture/discussion course examines the multi-step process by which normal cells become malignant cancer cells. Topics include how defects in the regulation of proliferation, differentiation, and apoptosis can occur in cancer cells, as well as how cancer cells can acquire the ability to attract blood vessels (angiogenesis) and to invade other organ systems (metastasis). We emphasize the study of signal transduction pathways and how they are altered in cancer cells. The concept of genes that cause cancer (oncogenes) and genes that deter cancer (tumor suppressor genes) is discussed. New disease treatments that target specific molecular defects within cancer cells are reviewed.
Instructor(s): M. Villereal Terms Offered: Spring Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

BIOS 15116. Biology and Epidemiology of Cancer. 100 Units.
This course focuses on an introduction to cancer providing a biological perspective on how cancer arises and further progresses as a disease. The course will additionally focus on the ways in which genetics and environmental factors contribute to specific types of cancer. A brief analysis of the epidemiology of some cancers will be discussed in addition to providing an overview of the traditional and emerging cancer therapeutics and a perspective on the psychological and societal impacts of cancer and how this continues to evolve.
Instructor(s): R. Bednarczyk Term Offered: Spring
Prerequisite(s): BIOS 10130 or BIOS 10140.
Note(s): NO BIOLOGICAL SCIENCES MAJORS AND NO NON-BIOLOGY PRE-MEDS, except by petition.

BIOS 15117. Plants, Pathogens, and People. 100 Units.
Students will explore the major plant disease causing pathogens and how scientists and farmers are working to protect our food supply. Students will explore the biology of the major groups of disease-causing microorganisms (bacteria, fungi, oomycetes, viruses, and nematodes). We will also learn how plants are protected from infection - including protection from plant immunity, genetic improvement, and disease management practices. Additionally, we will discuss how plant pathogens have and continue to shape society - from the Irish Potato Famine to modern day disease epidemics. Emphasis will be placed on understanding scientific research in the context of plant biology - from experimental design to data analysis. Students will apply their knowledge and critical thinking skills through case studies and analysis of new research findings. This course will encourage students to use their strengths and interests to explore plant pathology and will allow flexibility to explore student questions and curiosities.
Instructor(s): K. Butler Term Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

TWO-QUARTER BIOLOGY SEQUENCES FOR NON-MAJORS
These sequences are an alternative to taking BIOS 10130 Principles of Biology or BIOS 10140 Inquiry-based Exploration of Biology plus a Topics course to fulfill the general education requirement in the Biological Sciences. Students MUST take BOTH courses in a sequence.

METABOLISM SEQUENCE
BIOS 10501. Systems of the Human Body. 100 Units.
Must be taken in sequence with BIOS 10500. This course examines the structure and function of the human body, spanning from submicroscopic molecules to the most visible aspects of the human body. The course introduces the anatomy (body structure) and physiology (body function) of our various body systems in their resting and ready states. In the second course of the sequence (BIOS 10500), the body will be re-examined in its active, dynamic state.
Instructor(s): B. Fineschi, M. Osadjan Term Offered: Autumn
Prerequisite(s): This course MUST be followed by BIOS 10500 to satisfy the general education requirement in biological sciences. Completion of only BIOS 10501 will count as a topics course. NO BIOLOGICAL SCIENCES MAJORS, except by petition.
BIOS 10500. Metabolism and Exercise. 100 Units.
Must be taken in sequence with BIOS 10501. This course examines the flow of energy through the human body from the nutrients we eat to the activities we perform. This course expands on the basic anatomy and physiology of BIOS 10501 to explore such phenomena as metabolism, temperature and fluid balance, exercise performance, and homeostatic control in times of activity.
Instructor(s): B. Fineschi, M. Osadjan Terms Offered: Winter
Prerequisite(s): BIOS 10501. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.
Note(s): This course must be taken subsequent to BIOS 10501 Systems of the Human Body. L.

COMPUTER MODELING SEQUENCE
BIOS 10602. Multiscale Modeling of Biological Systems I. 100 Units.
Modern biology generates massive amounts of data; this course is devoted to biological information and the models and computational techniques used to make sense of it. The first course in the sequence begins with the organization of life at the molecular level, and builds a physical understanding to the structure of macromolecules such as DNA, RNA and proteins. Students learn about biological databases, algorithms for sequence alignment and phylogenetic tree building. Students will also be introduced to basics of high performance computation and its application to the field of bioinformatics. They will learn how to use our in-house supercomputer to process and analyze next generation gene sequencing data in order to identify disease-relevant variants. Students implement computational algorithms using R and Unix.
Instructor(s): E. Haddadian Terms Offered: Autumn. L.
Prerequisite(s): MATH 13300/15300/16300 or equivalent placement. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition. This course MUST be followed by the second course in the sequence.

BIOS 10603. Multiscale Modeling of Biological Systems II. 100 Units.
Must be taken in sequence with BIOS 10602. Major Advances in understanding how life works at the molecular level have revolutionized biology. The second course in the sequence is dedicated to the study of how large molecules, such as proteins, DNA, carbohydrates, and phospholipids, perform their functions. The course will begin with a solid grounding in molecular chemistry and the forces that govern interactions between atoms and molecules. This is followed by an overview of structure and function of macromolecules, in particular of proteins and enzymes. The students will learn how to visualize macromolecules and measure their basic properties and to model their physical movements by means of molecular dynamic simulations running at university’s super computer facility. The course will then proceed to describe how interactions of these molecules produce functioning organelles and cells, and how molecular mishaps can lead to disease.
Instructor(s): E. Haddadian Terms Offered: Winter. L.
Prerequisite(s): BIOS 10602 or consent of instructor. NO BIOLOGICAL SCIENCES MAJORS OR NON-BIOLOGY PRE-MED STUDENTS, except by petition.

HEALTH PROFESSIONS PREPARATION SEQUENCE FOR NON-MAJORS
BIOS 20170 through BIOS 20175
This integrated sequence explores the molecular, cellular, organismal, and biochemical properties of living systems. It is designed to prepare students who do not intend to major in Biological Sciences or Biological Chemistry for graduate study in the health professions. This five-course sequence begins with BIOS 20170 Microbial and Human Cell Biology in the Winter Quarter and both BIOS 20171 Human Genetics and Developmental Biology and BIOS 20172 Mathematical Modeling for Pre-Med Students I in the Spring Quarter. BIOS 20170 and BIOS 20171 will complete a student’s general education requirement in the biological sciences. BIOS 20172 must be taken concurrently with BIOS 20171. The second year of the sequence continues with BIOS 20173 Perspectives of Human Physiology in the Autumn Quarter and concludes with BIOS 20175 Biochemistry and Metabolism in the Winter Quarter. The Fundamentals Sequence for Biological Sciences majors is also open to non-majors completing their pre-med biology requirements and provides comparable topical coverage. The Health Professions Preparation Sequence is open only to students who are not planning to major in Biological Sciences or Biological Chemistry and cannot be applied toward either of these majors. We recommend that students start the sequence in their first or second year.
Note: Concurrent enrollment in BIOS 20171 and BIOS 20172 is required in the second quarter of the sequence. Students who do not plan to major in Biological Sciences but cannot commit to concurrent enrollment in BIOS 20171 and 20172 should satisfy their pre-health biology requirements with courses from the Fundamentals Sequence for Biological Sciences majors (usually BIOS 20186, 20187, and 20188), two of which will count toward the general education requirement in the biological sciences.

BIOS 20170. Microbial and Human Cell Biology. 100 Units.
This course is the entry point into an integrated biology sequence designed to prepare non-biology majors for application to schools in the health professions. We explore topics in human cell biology within the context of evolutionary biology, chemistry, microbiology, and medicine. We pay special attention to the influence of prokaryotes on the history of life and to the ecological interactions between humans and their microbiota, which have major implications for human health and disease. Students read and discuss papers from the scientific literature, attend discussions and gain experience with microbiological basic microscopy techniques in lab.
Instructor(s): C. Andrews, R. Bednarczyk Terms Offered: Winter. L.
Prerequisite(s): This sequence is open only to students who are not planning to major in Biological Sciences or Biological Chemistry and cannot be applied to either of these majors. It is recommended that students start the sequence in their first or second year.

BIOS 20171. Human Genetics and Developmental Biology. 100 Units.
This course covers the fundamentals of genetics, with an emphasis on human traits and diseases. Topics include Mendelian genetics, simple and complex traits, genetic diseases, the human genome, and testing for human traits and diseases. After establishing a foundation in genetics, we will discuss mechanisms underlying differentiation and development in humans. We will focus on events that lead to gastrulation and the establishment of the body plan (how humans develop from an un-patterned egg into a recognizable human form). Other topics may include limb development and stem cell biology.
Instructor(s): O. Pineda-Catalan, R. Dutt. Terms Offered: Spring. L.
Prerequisite(s): Not open to students who have not completed BIOS 20170. Must be taken concurrently with BIOS 20172.

FUNDAMENTALS SEQUENCES FOR BIOLOGICAL SCIENCES MAJORS

All first-year students who wish to major in Biological Sciences must take BIOS 20153 Fundamentals of Ecology and Evolutionary Biology in the Winter Quarter and BIOS 20151 Introduction to Quantitative Modeling in Biology (Spring) as prerequisites for the Fundamentals Sequence courses, which form the foundation of the Biological Sciences major. BIOS 20153 and BIOS 20151 will satisfy the general education requirement in the biological sciences. Majors will go on to complete one of the Fundamentals Sequences.

BIOS 20151. Introduction to Quantitative Modeling in Biology. 100 Units.
The goal for this course is to give future biologists the quantitative tools to fully participate in modern biological research. These include descriptive statistics, linear regression, stochastic independence and hypothesis testing, Markov models and stationary probability distributions, solutions of linear differential equations, equilibria and stability analysis of nonlinear differential equations. The ideas are applied to different areas of biology, e.g. molecular evolution, allometry, epidemiology, and biochemistry, and implemented by students in computer assignments using the R computational platform.
Instructor(s): Section 1: D. Kondrashov; Section 2: A. Basu, K. Bader. Terms Offered: Spring. L.
Prerequisite(s): Two quarters of calculus of any sequence (MATH 13200 or 15200 or 16200). First-year Biology Major standing only.
Note(s): This course is required to partially fulfill the general education requirement in biology for Biological Sciences majors in all tracks except for students in the Advanced Biology sequence. This course cannot be used as a Topics course for the general education requirement for non-Biological Sciences majors.

BIOS 20153. Fundamentals of Ecology and Evolutionary Biology. 100 Units.
This course surveys the basic principles of ecology and evolutionary biology to lay the foundation for further study in all fields of biology. Broad ecological concepts, such as population growth, disease dynamics, and species interactions, will be explored through a combination of published data, simulations, and mathematical models. The emphasis is placed on "ecological thinking". Essential topics in the modern study of evolutionary biology will be covered with a focus on both theory and empirical examples. Examples of topics include history of evolutionary thought, evidence for evolution, mechanisms of microevolution, phylogenetics, molecular evolution, and speciation.
Instructor(s): M. Kronforst, C. Brook, C. Andrews, A. Hunter. Terms Offered: Winter. L.
Note(s): This course is required to partially fulfill the general education requirement in biology for Biological Sciences majors in all tracks, except for students taking the Advanced Biology sequence.

SPECIFIC GENERAL EDUCATION REQUIREMENT FOR CERTAIN MAJORS

Students should note that several majors have specified requirements for how the biological sciences portion of the general education requirements must be satisfied.

These include Biological Chemistry, Neuroscience, Environmental Science, Geophysical Sciences, and Molecular Engineering.