Environmental Science

Program of Study

The Department of the Geophysical Sciences offers a BS degree in Environmental Science. The program is intended for students whose interests fall at the intersection of biology, chemistry, and earth sciences, and is designed to prepare them to enter a variety of interdisciplinary fields in the environmental sciences, including the interface of environmental science and public policy. Students are given the opportunity to study such topics as the biogeochemical cycles, environmental chemistry, microbiology, ecology, the chemistry and dynamics of the ocean and atmosphere, climate change, and environmentally relevant aspects of economics and policy. Students are encouraged to participate in the Semester in Environmental Science at the Marine Biological Laboratory, and undergraduate research is also strongly encouraged.

Program Requirements for the BS in Environmental Science

The requirements for the BS degree in Environmental Science involve completion of:

- six required courses that fulfill general education requirements for the physical sciences, biological sciences, and mathematics
- seven required science or mathematics courses
- eleven elective courses pertinent to the major from the electives lists below, which must include
 - four courses designated ENSC or GEOS
 - one course in Statistics, and two more in any of Mathematics, Statistics, or Computing
 - one to three courses in Social Science/Public Policy

Candidates for the BS in Environmental Science complete a year of chemistry, a year of mathematics (including Calculus I-II), and a year of biology (ENSC 24400 Ecology and Conservation, GEOS 27300 Biological Evolution-Advanced, and BIOS 20198 Biodiversity), as well as PHYS 13100 Mechanics or the equivalent. (Note that some advanced chemistry courses require further physics as a prerequisite.)

Students are encouraged to begin discipline-specific courses as early as possible. Required disciplinary courses include ENSC 13300 The Atmosphere, ENSC 23800 Global Biogeochemical Cycles, and ENSC 24500 Environmental Microbiology. (Note that ENSC 23800 Global Biogeochemical Cycles is typically offered every other year.) Of ENSC/GEOS science electives, one can be a field course, and one may be ENSC 29700 Reading and Research in Environmental Science. Students participating in the Semester in Environmental Science receive credit for four courses in environmental science, two of which can be used to substitute for ENSC 24400 Ecology and Conservation and ENSC 24500 Environmental Microbiology.

The major is designed to be flexible enough to accommodate students whose primary interests cover various aspects of environmental science. Sample course schedules below give examples of course plans appropriate to students focusing on climatology, conservation, and biogeochemistry. Students with a focus on policy questions may take up to three courses in social science/public policy. These courses are available through undergraduate programs in Economics, Public Policy Studies, and Environmental and Urban Studies, or through the Harris School of Public Policy.

Because analysis of data and mathematical modeling are fundamental to environmental science, the major requires six courses in quantitative methods: a year of mathematics, one course in statistics, and two additional courses in mathematics, statistics, or computing.

Note that while students taking calculus through the more introductory MATH 13000s sequence are encouraged to complete the third quarter of calculus, MATH 13300 Elementary Functions and Calculus III, in the higher tracks Calculus III (e.g., MATH 15300 Calculus III) is not specifically required or recommended, as the first two courses offer a sufficiently comprehensive calculus training for students to move on to other courses. Depending on the choice of electives, students may credit as many as nine Mathematics/Statistics/Computing courses toward the major.

Summary of Requirements for the BS in Environmental Science

GENERAL EDUCATION

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>CHEM 10100 & CHEM 10200</td>
<td>Introductory General Chemistry I and Introductory General Chemistry II</td>
</tr>
<tr>
<td>CHEM 11100-11200</td>
<td>Comprehensive General Chemistry I-II *</td>
</tr>
<tr>
<td>CHEM 12100 & CHEM 12200</td>
<td>Honors General Chemistry I and Honors General Chemistry II</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>MATH 13100-13200</td>
<td>Elementary Functions and Calculus I-II *</td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II</td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
</tr>
</tbody>
</table>
Both of the following: **
BIOS 20198 Biodiversity
GEOS 27300 Biological Evolution-Advanced%

Total Units 600

MAJOR
ENSC 13300 The Atmosphere 100
ENSC 23800 Global Biogeochemical Cycles 100
ENSC 23900 Environmental Chemistry 100
ENSC 24400 Ecology and Conservation 100
CHEM 11300 Comprehensive General Chemistry III ‡ 100
or CHEM 12300 Honors General Chemistry III

One of the following: 100
PHYS 12100 General Physics I * †
PHYS 13100 Mechanics
PHYS 14100 Honors Mechanics

One of the following: 100
MATH 20000 Mathematical Methods for Physical Sciences I
MATH 20250 Abstract Linear Algebra
PHYS 22000 Introduction to Mathematical Methods in Physics
BIOS 20152 Introduction to Quantitative Modeling in Biology (Advanced)
MATH 13300 Elementary Functions and Calculus III†
MATH 15300 Calculus III
MATH 16300 Honors Calculus III

Eleven electives as follows: 1100
Four courses designated ENSC or GEOS from List E-1: Physical and Biological Sciences
One course from List E-2: Social Sciences
Three courses from List E-3: Computational Sciences, of which one must be under the heading of Statistics
Three more courses from any of the elective lists, but only up to two of these may be from List E-2: Social Sciences

Total Units 1800

* Credit may be granted by examination.
** Only students majoring in Environmental Science or Geophysical Sciences may use this pairing toward the general education requirement in the Biological Sciences. Environmental Science and Geophysical Sciences majors can take these courses without the BIOS prerequisites (BIOS 20150-20151/20152) unless they pursue a double major in Biological Sciences. They are expected to show competency in mathematical modeling of biological phenomena covered in BIOS 20151/20152.
† PHYS 13100 or PHYS 14100 are the preferred courses. PHYS 12100 is allowable on a case-by-case basis but may not provide adequate preparation to allow for enrollment in higher level PHYS courses. Additionally, PHYS 12100 has a prerequisite of a year of Chemistry. Special petition to the department counselor is required for PHYS 12100 approval.
% Biological Evolution-Advanced has several cross-listings. Environmental Sciences majors must register for it under the GEOS 27300 listing.

Lists of Elective Courses
List E-1: Physical and Biological Sciences
Environmental Science
ENSC 21100 Energy: Science, Technology, and Human Usage 100
ENSC 23805 Stable Isotope Biogeochemistry 100
ENSC 24000 Geobiology 100
ENSC 24500 Environmental Microbiology 100
ENSC 29700 Reading and Research in Environmental Science 100

Semester in Environmental Science/MBL
The following courses are the College designations for the Semester in Environmental Science that is taught at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. One quarter at MBL counts for four courses: ENSC 23820, ENSC 24100, ENSC 29800, and an elective of ENSC 24200, ENSC 24300, or ENSC 28100. Admission
to the Semester in Environmental Science program is by application, which must be received by the MBL generally in March of the year preceding the start of the semester. Admissions decisions will generally be sent in April. Note that these courses start at the beginning of September, typically four weeks prior to the start of the College’s Autumn Quarter and are completed by the end of Autumn Quarter. More information on the course content and the application process, and deadlines can be found at college.uchicago.edu/academics/semester-environmental-science. Students participating in the Semester in Environmental Science receive credit for four courses in environmental science, two of which can be used to substitute for ENSC 24400 Ecology and Conservation and ENSC 23900 Environmental Chemistry.

Field Courses in Environmental Science

The department sponsors field trips that range in length from one day to several weeks. Shorter field trips typically form part of lecture-based courses and are offered each year. (The trips are open to all students and faculty if space permits.) Longer trips are designed as undergraduate field courses, and one such course may be used as an elective science course for the major. Destinations of field courses have recently included Baja California and the Bahamas.

ENSC 29002 Field Course in Modern and Ancient Environments 100

Geophysical Sciences

ENSC 23820 Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory 100
ENSC 24100 Ecology - Marine Biological Laboratory 100
ENSC 29800 Independent Undergraduate Research in Environmental Sciences # Marine Biological Laboratory 100
ENSC 24200 Methods in Microbial Ecology - Marine Biological Laboratory 100
ENSC 24300 Roles of Animals in Ecosystems # Marine Biological Laboratory 100
ENSC 28100 Quantitative Environmental Analyses # Marine Biological Laboratory 100

Chemistry

CHEM 20100-20200 Inorganic Chemistry I-II 200
CHEM 22000-22100-22200 Organic Chemistry I-II-III 300
CHEM 23300 Intermediate Organic Chemistry * 100
CHEM 26100-26200-26300 Quantum Mechanics; Thermodynamics; Chemical Kinetics and Dynamics ** 300

Biology and Ecology***

BIOS 20200 Introduction to Biochemistry 100
BIOS 23232 Ecology and Evolution in the Southwest 100
BIOS 23252 Field Ecology 100
BIOS 23254 Mammalian Ecology 100
BIOS 23258 Molecular Evolution I: Fundamentals and Principles 100
BIOS 23266 Evolutionary Adaptation 100
BIOS 23289 Marine Ecology 100
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>BIOS 23404</td>
<td>Reconstructing the Tree of Life: An Introduction to Phylogenetics</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 23406</td>
<td>Biogeography</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 25206</td>
<td>Fundamentals of Bacterial Physiology</td>
<td>100</td>
</tr>
</tbody>
</table>

Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 1200</td>
<td>General Physics II</td>
<td>200</td>
</tr>
<tr>
<td>PHYS 12300</td>
<td>and General Physics III</td>
<td></td>
</tr>
<tr>
<td>PHYS 13200-13300</td>
<td>Electricity and Magnetism; Waves, Optics, and Heat</td>
<td>200</td>
</tr>
<tr>
<td>PHYS 14200-14300</td>
<td>Honors Electricity and Magnetism; Honors Waves, Optics, and Heat</td>
<td>200</td>
</tr>
<tr>
<td>PHYS 18500</td>
<td>Intermediate Mechanics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22500</td>
<td>Intermediate Electricity and Magnetism I</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22600</td>
<td>Electronics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22700</td>
<td>Intermediate Electricity and Magnetism II</td>
<td>100</td>
</tr>
</tbody>
</table>

* Enrollment in CHEM 23300 requires a grade of C or higher in CHEM 22200 or 23200
** Prerequisites include MATH 20100 and PHYS 13300
*** ENSC majors can take these courses without the BIOS prerequisites (20150-20151) unless they pursue a double major in biology. Students are expected to show competency in the mathematical modeling of biological phenomena covered in BIOS 20151.

‡ PHYS 13200-13300 or PHYS 14200-14300 are the preferred sequences. PHYS 12200-12300 is allowable on a case-by-case basis but may not provide adequate preparation to allow for enrollment in higher level PHYS courses. Special petition to the department counselor is required for PHYS 12100-12200-12300 approval.

List E-2: Social Sciences

Microeconomics Foundations

Students may take one of the following:

- ECON 19800 Introduction to Microeconomics 100
- ECON 20000 The Elements of Economic Analysis I 100
- ECON 20100 The Elements of Economic Analysis II 100
- PBPL 20000 Economics for Public Policy 100
- PPFA 32300 Principles of Microeconomics and Public Policy I 100
- PPFA 32400 Principles of Microeconomics and Public Policy II 100

Other Social Science Electives

(Note that many courses below require microeconomics as a prerequisite)

- ECON 19900 Introduction to Macroeconomics ** 100
- ECON 26500 Environmental Economics 100
- ENST 23550 Urban Ecology and the Nature of Cities 100
- ENST 24102 Environmental Politics 100
- PBPL 21800 Economics and Environmental Policy 100
- PBPL 23100 Environmental Law 100
- PBPL 24701 U.S. Environmental Policy 100
- PBPL 26530 Environment, Agriculture, and Food: Economic and Policy Analysis 100
- PBPL 26531 Environment, Agriculture, and Food: Advanced Economic and Policy Analysis 100
- PPFA 36921 Energy Economics and Policy 100
- PPFA 36930 Environmental Economics: Theory and Applications 100
- PPFA 38900 Environmental Science/Policy 100
- PPFA 39901 Policy Approaches to Mitigating Climate Change 100

* Must be taken in sequence
** Acceptable only if a microeconomics course is also taken

List E-3: Computational Sciences

Mathematics

- MATH 15300 Calculus III 100
- or MATH 16300 Honors Calculus III
MATH 15910 Introduction to Proofs in Analysis 100
or STAT 24300 Numerical Linear Algebra
MATH 20000-20100 Mathematical Methods for Physical Sciences I-II * 200
MATH 21100 Basic Numerical Analysis 100
MATH 20250 Abstract Linear Algebra 100
BIOS 20152 Introduction to Quantitative Modeling in Biology (Advanced) 100
BIOS 26210-26211 Mathematical Methods for Biological Sciences I-II 200

Physics

PHYS 22000 Introduction to Mathematical Methods in Physics ** 100
PHYS 22100 Mathematical Methods in Physics *** 100

Statistics

Students may take any course in statistics at the 22000 level or higher, but recommended courses are shown below. Some courses require one of the first three as a prerequisite.

Students may take one of the following:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>PP HA 31200 & PP HA 31300</td>
<td>Mathematical Statistics for Public Policy I and Mathematical Statistics for Public Policy II (\dagger)</td>
<td>200</td>
</tr>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications §§</td>
<td>100</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods (\dagger\dagger)</td>
<td>100</td>
</tr>
<tr>
<td>STAT 24400-24500</td>
<td>Statistical Theory and Methods I-II (\dagger)</td>
<td>200</td>
</tr>
<tr>
<td>STAT 22400</td>
<td>Applied Regression Analysis</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22600</td>
<td>Analysis of Categorical Data</td>
<td>100</td>
</tr>
<tr>
<td>STAT 26100</td>
<td>Time Dependent Data</td>
<td>100</td>
</tr>
<tr>
<td>PP HA 34600</td>
<td>Program Evaluation</td>
<td>100</td>
</tr>
</tbody>
</table>

The 30000 (and above) level courses listed below are a joint offering of the Department of Statistics and the Department of Public Health Studies, and may be suitable for Environmental Science majors.

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>STAT 31900</td>
<td>Introduction to Causal Inference</td>
<td>100</td>
</tr>
<tr>
<td>STAT 35800</td>
<td>Statistical Applications</td>
<td>100</td>
</tr>
<tr>
<td>STAT 36900</td>
<td>Applied Longitudinal Data Analysis</td>
<td>100</td>
</tr>
</tbody>
</table>

Computing

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>CM SC 12100</td>
<td>Computer Science with Applications I (\dagger)</td>
<td>100</td>
</tr>
<tr>
<td>CM SC 12200</td>
<td>Computer Science with Applications II</td>
<td>100</td>
</tr>
<tr>
<td>CM SC 12300</td>
<td>Computer Science with Applications III</td>
<td>100</td>
</tr>
<tr>
<td>CM SC 23710</td>
<td>Scientific Visualization</td>
<td>100</td>
</tr>
</tbody>
</table>

* Recommended prerequisite is MATH 19620 or MATH 15300 or MATH 16300

** Would generally substitute for MATH 20000-20100

*** Recommended in addition to MATH 20000-20100 for advanced students—covers partial differential equations

\(\dagger\) Must be taken as a sequence

\(\dagger\dagger\) Higher programming component than STAT 22000

§ Recommended for advanced students. Must be taken as a sequence to be credited. STAT 24400-24500 have no prerequisite but it is possible to take both STAT 23400 and STAT 24400-24500.

§§ AP credit for STAT 22000 does not count toward the major requirements. Students with AP credit for STAT 22000 should plan to take at least three other courses from List E-3: Computational Sciences, one of which must be under the heading of Statistics.

* Students seeking to double major in Computer Science must complete CM SC 12100-12200-12300 as a sequence per the Computer Science rule.

Grading

Students majoring in Environmental Science must receive quality grades in all courses taken to meet requirements in the major.

Honors

The BS degree with honors is awarded to students who meet the following requirements: (1) a GPA of 3.25 or higher in the major and of 3.0 or higher overall; (2) completion of a paper based on original research, supervised and approved by a faculty member in geophysical sciences; (3) an oral presentation of the thesis research. All theses will be examined by the supervisor and a second reader from the faculty. Manuscript drafts will generally be due in the sixth week of the quarter in
which the student will graduate (fifth week in Summer Quarter), and final manuscripts and oral presentations in the eighth week (seventh week in Summer Quarter).

Students are strongly encouraged to reach out to potential faculty supervisors no later than their third year, since theses generally arise out of research projects already begun with faculty members. When a thesis topic is determined, students should notify the undergraduate adviser of their intent to complete a thesis and confirm their eligibility. ENSC 29700 Reading and Research in Environmental Science can be devoted to the preparation of the required paper; however, students using this course to meet a requirement in the major must take it for a quality grade.

Students who wish to submit a single paper to meet the honors requirement in Environmental Science and the BA paper requirement in another major should discuss their proposals with the undergraduate advisers from both programs no later than the end of third year. Certain requirements must be met. A consent form, to be signed by the undergraduate advisers, is available from the College adviser. It must be completed and returned to the College adviser by the end of Autumn Quarter of the student’s year of graduation.

Sample BS Programs

Each student will design an individual plan of course work, choosing from a wide range of selections that take advantage of rich offerings from a variety of subdisciplines. The sample programs that appear below are merely for the purpose of illustration; many other variations would be possible. NOTE: Courses that meet general education requirements and are required for the major are not listed.

Environmental Geochemistry

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSC 23805</td>
<td>Stable Isotope Biogeochemistry</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 23820</td>
<td>Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 28100</td>
<td>Quantitative Environmental Analyses # Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 29800</td>
<td>Independent Undergraduate Research in Environmental Sciences # Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 20200</td>
<td>Introduction to Biochemistry</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 26210-26211</td>
<td>Mathematical Methods for Biological Sciences I-II</td>
<td>200</td>
</tr>
<tr>
<td>CHEM 22000</td>
<td>Organic Chemistry I</td>
<td>200</td>
</tr>
<tr>
<td>& CHEM 22100</td>
<td>and Organic Chemistry II</td>
<td></td>
</tr>
<tr>
<td>PBPL 20000</td>
<td>Economics for Public Policy</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications</td>
<td>100</td>
</tr>
</tbody>
</table>

Environmental Microbiology

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSC 23820</td>
<td>Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 24000</td>
<td>Geobiology</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 24100</td>
<td>Ecology - Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 24200</td>
<td>Methods in Microbial Ecology - Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 24500</td>
<td>Environmental Microbiology</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 29800</td>
<td>Independent Undergraduate Research in Environmental Sciences # Marine Biological Laboratory</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 23404</td>
<td>Reconstructing the Tree of Life: An Introduction to Phylogenetics</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 25206</td>
<td>Fundamentals of Bacterial Physiology</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 26210-26211</td>
<td>Mathematical Methods for Biological Sciences I-II</td>
<td>200</td>
</tr>
<tr>
<td>PBPL 20000</td>
<td>Economics for Public Policy</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22000</td>
<td>Statistical Methods and Applications</td>
<td>100</td>
</tr>
</tbody>
</table>

Environmental Science and Public Policy

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ENSC 21100</td>
<td>Energy: Science, Technology, and Human Usage</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 23805</td>
<td>Stable Isotope Biogeochemistry</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 25200</td>
<td>Global Warming: Understanding the Forecast</td>
<td>100</td>
</tr>
<tr>
<td>ENSC 29002</td>
<td>Field Course in Modern and Ancient Environments</td>
<td>100</td>
</tr>
<tr>
<td>BIOS 23406</td>
<td>Biogeography</td>
<td>100</td>
</tr>
<tr>
<td>PBPL 21800</td>
<td>Economics and Environmental Policy</td>
<td>100</td>
</tr>
<tr>
<td>PPHA 31301</td>
<td>Statistical Theory and Applications for Public Policy II</td>
<td>100</td>
</tr>
</tbody>
</table>
Environmental Science Courses

ENSC 13300. The Atmosphere. 100 Units.
This course introduces the physics, chemistry, and phenomenology of the Earth's atmosphere, with an emphasis on the fundamental science that underlies atmospheric behavior and climate. Topics include (1) atmospheric composition, evolution, and structure; (2) solar and terrestrial radiation in the atmospheric energy balance; (3) the role of water in determining atmospheric structure; and (4) wind systems, including the global circulation, and weather systems.

Instructor(s): D. Abbot

Terms Offered: Spring

Prerequisite(s): MATH 13100-MATH 13200

Equivalent Course(s): GEOS 13300, ENST 13300

ENSC 13400. Global Warming: Understanding the Forecast. 100 Units.
This course presents the science behind the forecast of global warming to enable the student to evaluate the likelihood and potential severity of anthropogenic climate change in the coming centuries. It includes an overview of the physics of the greenhouse effect, including comparisons with Venus and Mars; an overview of the carbon cycle in its role as a global thermostat; predictions and reliability of climate model forecasts of the greenhouse world. This course is part of the College Course Cluster program, Climate Change, Culture, and Society. (L)

Instructor(s): D. MacAyeal

Terms Offered: Autumn

Prerequisite(s): Some knowledge of chemistry or physics helpful.

Equivalent Course(s): ENST 12300, GEOS 13400, PHSC 13400

ENSC 13410. Global Warming: Understanding the Forecast (Flipped Class) 100 Units.
This course presents the science behind the forecast of global warming to enable the student to evaluate the likelihood and potential severity of anthropogenic climate change in the coming centuries. It includes an overview of the physics of the greenhouse effect, including comparisons with Venus and Mars; an overview of the carbon cycle in its role as a global thermostat; predictions and reliability of climate model forecasts of the greenhouse world. This course is part of the College Course Cluster program, Climate Change, Culture, and Society. This course covers the same material as PHSC 13400, but is organized using a flipped classroom approach in order to increase student engagement and learning.

Instructor(s): D. Abbot

Terms Offered: Spring

Prerequisite(s): Some knowledge of chemistry or physics helpful.

Equivalent Course(s): GEOS 13410, PHSC 13410, ENST 13410

ENSC 20209. An Environmental History of Africa, 1800-2016. 100 Units.
For much of the twentieth century the African environment has been a story of decline and degradation—a narrative of how Africans have consistently destroyed their pristine environments. Images of soil erosion, deforestation, and famines have, in part, shaped Western perceptions of Africa. This course will consider an alternative perspective of Africa's environment by focusing on the dynamic and complex processes of environmental change from the precolonial period to the present. We will draw on historical texts, novels, and films from multiple regions on the continent to explore how Africans understood, exploited, and managed their natural environments. By adopting an African "point of view," this course will attempt to address some of the grave misconceptions that have lead so many to believe that Africa was and continues to be a "Dark Continent." Students will be encouraged to think critically about the meaning of "environmental crisis" and how that trope has served various political and cultural projects over time. But we will also seriously consider the ways in which human beings have taxed natural resources in ways that have produced profound short- and long-term consequences.

Equivalent Course(s): HIST 20209

ENSC 21100. Energy: Science, Technology, and Human Usage. 100 Units.
This course covers the technologies by which humans appropriate energy for industrial and societal use, from steam turbines to internal combustion engines to photovoltaics. We also discuss the physics and economics of the resulting human energy system: fuel sources and relationship to energy flows in the Earth system; and modeling and simulation of energy production and use. Our goal is to provide a technical foundation for students interested in careers in the energy industry or in energy policy. Field trips required to major energy converters (e.g., coal-fired and nuclear power plants, oil refinery, biogas digester) and users (e.g., steel, fertilizer production). This course is part of the College Course Cluster program: Climate Change, Culture and Society.

Instructor(s): E. Moyer

Prerequisite(s): Knowledge of physics or consent of instructor.

Note(s): Not offered in Spring 2019. See GEOS 24750/ENSC 21150.

Equivalent Course(s): GEOS 24705, GEOS 34705, ENST 24705
ENSC 21150. Humans in the Earth System. 100 Units.

Human activities now have global-scale impact on the Earth, affecting many major biogeochemical cycles. One third of the Earth's surface is now used for production of food for humans, and CO2, the waste product of human energy use, now substantially affects the Earth's radiative balance. This course provides a framework for understanding humanity as a component of Earth system science. The course covers the Earth's energy flows and cycles of water, carbon, and nitrogen; their interactions; and the role that humans now play in modifying them. Both agriculture and energy technologies can be seen as appropriation of natural energy flows, and we cover the history over which human appropriations have become globally significant. The course merges geophysical and biological sciences and engineering, and includes lab sessions and field trips to agriculture, water management, and energy facilities to promote intuition. One year of university-level science is recommended.

Terms Offered: Spring
Equivalent Course(s): GEOS 24750, ENST 24750, GEOS 34750

ENSC 23600. Chemical Oceanography. 100 Units.

This course explores the chemistry of the ocean system and its variations in space and time. The oceans play an essential role in most (bio)geochemical cycles, interacting in various ways with the atmosphere, sediments, and crust. These interactions can be understood through studying the geochemical and isotopic properties of the ocean, its inputs and outputs, and its evolution as recorded in marine sediments and sedimentary rocks. Topics include: the marine carbon cycle, nutrient cycling, chemical sediments, and hydrothermal systems.

Instructor(s): Clara Blättler Terms Offered: Spring
Prerequisite(s): Completion of one of the following Chemistry Sequences: CHEM 10100-10200-11300 Introductory General Chemistry I-II; Comprehensive General Chemistry III or CHEM 11100-11200-11300 Comprehensive General Chemistry I-II-III or CHEM 12100-12200-12300 Honors General Chemistry I-II-III AND either GEOS 13100 or GEOS 13200.
Equivalent Course(s): GEOS 33600, GEOS 23600

ENSC 23800. Global Biogeochemical Cycles. 100 Units.

This survey course covers the geochemistry of the surface of the Earth, focusing on biological and geological processes that shape the distributions of chemical species in the atmosphere, oceans, and terrestrial habitats. Budgets and cycles of carbon, nitrogen, oxygen, phosphorous, and sulfur are discussed, as well as chemical fundamentals of metabolism, weathering, acid-base and dissolution equilibria, and isotopic fractionation. The course examines the central role that life plays in maintaining the chemical disequilibria that characterize Earth's surface environments. The course also explores biogeochemical cycles change (or resist change) over time, as well as the relationships between geochemistry, biological (including human) activity, and Earth's climate.

Instructor(s): J. Waldbauer Terms Offered: Winter
Prerequisite(s): CHEM 11100-11200 or consent of instructor
Equivalent Course(s): GEOS 33800, GEOS 23800

ENSC 23820. Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory. 100 Units.

This course examines the interface of biological processes with chemical processes in ecological systems. Course content emphasizes aquatic chemistry and the role of microbes in the cycling of nitrogen, carbon, and other elements. Effects of global changes on chemical cycling are emphasized.

Instructor(s): Marine Biological Laboratory Staff. Terms Offered: Autumn.
Prerequisite(s): Consent only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27710 and BIOS 27712 along with one of BIOS 27713, BIOS 27714 or BIOS 27715.
Equivalent Course(s): BIOS 27710, BIOS 27712

ENSC 23900. Environmental Chemistry. 100 Units.

This course examines the interface of biological processes with chemical processes in ecological systems. Course content emphasizes aquatic chemistry and the role of microbes in the cycling of nitrogen, carbon, and other elements. Effects of global changes on chemical cycling are emphasized.

Instructor(s): Clara Blättler Terms Offered: Autumn
Prerequisite(s): Completion of one of the following Chemistry Sequences: CHEM 10100-10200-11300 Introductory General Chemistry I-II; Comprehensive General Chemistry III or CHEM 11100-11200-11300 Comprehensive General Chemistry I-II-III or CHEM 12100-12200-12300 Honors General Chemistry I-II-III AND either GEOS 13100 or GEOS 13200.
Equivalent Course(s): GEOS 33800, GEOS 23800

ENSC 24000. Geobiology. 100 Units.

Geobiology seeks to elucidate the interactions between life and its environments that have shaped the coevolution of the Earth and the biosphere. The course will explore the ways in which biological processes affect the environment and how the evolutionary trajectories of organisms have in turn been influenced by environmental change. In order to reconstruct the history of these processes, we will examine the imprints they leave on both the rock record and on the genomic makeup of living organisms. The metabolism and evolution of microorganisms, and the biogeochemistry they drive, will be a major emphasis.

Instructor(s): M. Coleman, J. Waldbauer
Prerequisite(s): GEOS 13100-13200-13300 or college-level cell & molecular biology
Equivalent Course(s): GEOS 36600, GEOS 26600
ENSC 24100. Ecology - Marine Biological Laboratory. 100 Units.
This course examines the structure and functioning of terrestrial and aquatic ecosystems including the application of basic principles of community and ecosystem ecology. The course also examines contemporary environmental problems such as the impacts of global and local environmental change on community composition and food webs within forest, grassland, marsh and nearshore coastal ecosystems on Cape Cod. This course examines the structure and functioning of terrestrial and aquatic ecosystems including the application of basic principles of community and ecosystem ecology. The course also examines contemporary environmental problems such as the impacts of global and local environmental change on community composition and food webs within forest, grassland, marsh and nearshore coastal ecosystems on Cape Cod.
Instructor(s): Marine Biological Laboratory Staff Terms Offered: Autumn. L.
Prerequisite(s): Consent only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27711 and BIOS 27712 along with one of BIOS 27713, BIOS 27714 or BIOS 27715.
Equivalent Course(s): BIOS 27710

ENSC 24200. Methods in Microbial Ecology - Marine Biological Laboratory. 100 Units.
This course explores the biology of microbes found in the environment, including relationships with the physical, chemical, and biotic elements of their environment. Emphasis is placed on understanding the science underlying the various methodologies used in the study of these organisms and systems. In the laboratory, students will work with the latest techniques to measure microbial biomass, activity, extracellular enzymes, and biogeochemical processes. Students are also introduced to molecular methods for assessing microbial genomic diversity.
Instructor(s): Marine Biological Laboratory Staff Terms Offered: Autumn. L.
Prerequisite(s): Consent only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27710, BIOS 27711 and BIOS 27712.
Equivalent Course(s): BIOS 27714

ENSC 24300. Roles of Animals in Ecosystems # Marine Biological Laboratory. 100 Units.
This course addresses the question, How do animals, including man, affect the structure and function of ecosystems. The course takes an interdisciplinary approach focused on the interactions of animal diversity, migration patterns, population dynamics, and behavior with biogeochemical cycles, productivity, and transport of materials across ecosystems. This course is an elective option within the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA.
Instructor(s): Marine Biological Laboratory Staff Terms Offered: Autumn
Prerequisite(s): Consent only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27710, BIOS 27711, and BIOS 27712.
Equivalent Course(s): BIOS 27715

ENSC 24400. Ecology and Conservation. 100 Units.
This course focuses on the contribution of ecological theory to the understanding of current issues in conservation biology. We emphasize quantitative methods and their use for applied problems in ecology (e.g., risk of extinction, impact of harvesting, role of species interaction, analysis of global change). Course material is drawn mostly from current primary literature; lab and field components complement concepts taught through lecture. Overnight field trip required.
Prerequisite(s): BIOS 20150, BIOS 20151 or BIOS 20152 Note(s): BIOS 20196 is identical to the previously offered BIOS 23251. Students who have taken BIOS 23251 should not enroll in BIOS 20196. Equivalent Course(s): ENSC 24400
Instructor(s): C. Pfister, E. Larsen Terms Offered: Autumn. L.
Prerequisite(s): BIOS 20150, BIOS 20151 or BIOS 20152 Note(s): BIOS 20196 is identical to the previously offered BIOS 23251. Students who have taken BIOS 23251 should not enroll in BIOS 20196.
Equivalent Course(s): BIOS 20196

ENSC 24500. Environmental Microbiology. 100 Units.
The objective of this course is to understand how microorganisms alter the geochemistry of their environment. The course will cover fundamental principles of microbial growth, metabolism, genetics, diversity, and ecology, as well as methods used to study microbial communities and activities. It will emphasize microbial roles in elemental cycling, bioremediation, climate, and ecosystem health in a variety of environments including aquatic, soil, sediment, and engineered systems.
Instructor(s): M. Coleman Terms Offered: Autumn
Prerequisite(s): CHEM 11100-11200 and BIOS 20186 or BIOS 20197 or BIOS 20198
Equivalent Course(s): GEOS 36650, GEOS 26650

ENSC 28100. Quantitative Environmental Analyses # Marine Biological Laboratory. 100 Units.
This course emphasizes the application of quantitative methods to answering ecological questions. Students apply mathematical modeling approaches to simulating biological and chemical phenomena in terrestrial and marine ecosystems.
Instructor(s): Marine Biological Laboratory Staff Terms Offered: Autumn. L.
Prerequisite(s): Consent Only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27710, BIOS 27711 and BIOS 27712.
Equivalent Course(s): BIOS 27713
ENSC 29002. Field Course in Modern and Ancient Environments. 100 Units.
This course uses weekly seminars during Winter Quarter to prepare for a one-week field trip over spring break, where students acquire experience with sedimentary rocks and the modern processes responsible for them. Destinations vary; past trips have examined tropical carbonate systems of Jamaica and the Bahamas and subtropical coastal Gulf of California. We usually consider biological, as well as physical, processes of sediment production, dispersal, accumulation, and post-depositional modification.
Instructor(s): S. Kidwell, M. LaBarbera Terms Offered: Winter
Note(s): Organizational meeting and deposit usually required in Autumn Quarter; interested students should contact an instructor in advance.
Equivalent Course(s): GEOS 29002, GEOS 39002

ENSC 29700. Reading and Research in Environmental Science. 100 Units.
Independent study; regular meetings with Geophysical Sciences faculty member required. Register by section corresponding to faculty supervisor.
Terms Offered: Autumn Spring Summer Winter
Prerequisite(s): Consent of instructor and departmental counselor
Note(s): Students are required to submit the College Reading and Research Course Form. Available to nonmajors for P/F grading. Must be taken for a quality grade when used to meet a requirement in the major.

ENSC 29800. Independent Undergraduate Research in Environmental Sciences # Marine Biological Laboratory. 100 Units.
This course is the culmination of the Semester in Environmental Science at the Marine Biological Laboratory. An independent research project, on a topic in aquatic or terrestrial ecosystem ecology, is required. Students will participate in a seminar for scientific communication as well as submit a final paper on their project.
Instructor(s): Marine Biological Laboratory Staff Terms Offered: Autumn.
Prerequisite(s): Consent only. Admission by application to the Semester in Environmental Science program at the Marine Biological Laboratory in Woods Hole, MA; concurrent registration in BIOS 27710 and BIOS 27711 along with one of BIOS 27713, BIOS 27714 or BIOS 27715.
Equivalent Course(s): BIOS 27712
Font Notice

This document should contain certain fonts with restrictive licenses. For this draft, substitutions were made using less legally restrictive fonts. Specifically:

- Times was used instead of Trajan.
- Times was used instead of Palatino.

The editor may contact Leepfrog for a draft with the correct fonts in place.