Department Website: http://geosci.uchicago.edu

PROGRAM OF STUDY

The Department of the Geophysical Sciences (GEOS) offers unique programs of study in the earth, atmospheric, and planetary sciences. Topics include the physics, chemistry, and dynamics of the atmosphere, oceans, and ice sheets; past and present climate change; the origin and history of the Earth, moon, and meteorites; properties of the deep interior of the Earth and the dynamics of crustal movements; and the evolution and geography of life and the Earth's surface environments through geologic time. These multidisciplinary topics require an integrated approach founded on mathematics, physics, chemistry, and biology.

Both the BA and BS programs prepare students for careers that draw upon the earth, atmospheric, and planetary sciences. However, the BS degree provides a more focused and intensive program of study for students who intend to pursue graduate work in these disciplines. The BA degree also offers thorough study in the geophysical sciences, but it provides a wide opportunity for elective freedom to pursue interdisciplinary interests, such as environmental policy, law, medicine, business, and precollege education.

PROGRAM REQUIREMENTS FOR THE BA IN GEOPHYSICAL SCIENCES

The requirements for the BA degree in Geophysical Sciences involve completion of:

- six required courses that fulfill general education requirements for the physical sciences, biological sciences, and mathematics
- eight required science or mathematics courses
- seven elective courses pertinent to the major from the electives lists below, which must include:
 - one course in Computational Sciences (List 2)
 - four 20000-level courses designated GEOS in List 1
 - two more 20000-level science courses from any of Lists 1–2

Candidates for the BA in Geophysical Sciences complete a year of chemistry, a year of physics, a year of mathematics (including Calculus I-II), and a year of biology (GEOS 27300 Biological Evolution-Advanced and BIOS 20198 Biodiversity).

The requirement for the third quarter of mathematics may be satisfied by either completing the calculus sequence (recommended for students taking the more introductory MATH 13000s sequence but not specifically required or recommended for the higher tracks such as MATH 15000s, as the first two quarters offer a sufficiently comprehensive calculus training for students to move on to other courses) or taking one of the designated mathematical methods courses instead. In addition, students must complete one elective course from Computational Sciences (List 2).

Students are encouraged to begin discipline-specific courses as early as possible. Required disciplinary courses include GEOS 13100 Physical Geology, GEOS 13200 Earth History, and GEOS 13300 The Atmosphere.

A minimum of six additional 20000-level science courses are required. At least four must be GEOS courses from List 1. Up to two may be chosen from other science courses in List 1. Up to two may be chosen from Computational Sciences (List 2). One may be a field course.

Summary of Requirements for the BA in Geophysical Sciences

GENERAL EDUCATION

One of the following sequences:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>CHEM 10100</td>
</tr>
<tr>
<td></td>
<td>& CHEM 10200</td>
</tr>
<tr>
<td></td>
<td>Introductory General Chemistry I and Introductory General Chemistry II</td>
</tr>
<tr>
<td></td>
<td>CHEM 11100-11200</td>
</tr>
<tr>
<td></td>
<td>Comprehensive General Chemistry I-II</td>
</tr>
<tr>
<td></td>
<td>CHEM 12100</td>
</tr>
<tr>
<td></td>
<td>& CHEM 12200</td>
</tr>
<tr>
<td></td>
<td>Honors General Chemistry I</td>
</tr>
<tr>
<td></td>
<td>and Honors General Chemistry II</td>
</tr>
</tbody>
</table>

One of the following sequences:

<table>
<thead>
<tr>
<th>Sequence</th>
<th>Course</th>
</tr>
</thead>
<tbody>
<tr>
<td>200</td>
<td>MATH 13100-13200</td>
</tr>
<tr>
<td></td>
<td>Elementary Functions and Calculus I-II</td>
</tr>
<tr>
<td></td>
<td>MATH 15100-15200</td>
</tr>
<tr>
<td></td>
<td>Calculus I-II</td>
</tr>
<tr>
<td></td>
<td>MATH 16100-16200</td>
</tr>
<tr>
<td></td>
<td>Honors Calculus I-II</td>
</tr>
<tr>
<td></td>
<td>BIOS 20198</td>
</tr>
<tr>
<td></td>
<td>Biodiversity</td>
</tr>
</tbody>
</table>

Both of the following:

- 200
- MATH 13100-13200 Elementary Functions and Calculus I-II
- MATH 15100-15200 Calculus I-II
- MATH 16100-16200 Honors Calculus I-II
- BIOS 20198 Biodiversity
Program Requirements for the BS in Geophysical Sciences

The requirements for the BS degree in Geophysical Sciences involve completion of:

- six required courses that fulfill general education requirements for the physical sciences, biological sciences, and mathematics
- eight required science or mathematics courses
- ten elective courses pertinent to the major from the electives lists below, which must include:
 - two courses in Computational Sciences (List 2)
 - four 20000-level courses designated GEOS in List 1
 - four more 20000-level science courses from any of Lists 1–2: up to three non-GEOS courses from List 1, up to two from List 2

Total Units: 1500

* Credit may be granted by examination.
** Only Environmental Science and Geophysical Sciences majors may use this pairing to satisfy the general education requirement in the biological sciences. Geophysical Sciences majors can take these courses without the Biological Sciences prerequisites (BIOS 20153-20151) unless they pursue a double major in Biological Sciences. They are expected to show competency in mathematical modeling of biological phenomena covered in BIOS 20151.
† Only one of these electives may be a field course (GEOS 29001, GEOS 29002, GEOS 29005) and only one of these electives may be GEOS 29700 Reading and Research in the Geophysical Sciences.
§ PHYS 13100-13200-13300 or PHYS 14100-14200-14300 are the preferred courses. PHYS 12100-12200-12300 is allowable on a case-by-case basis but may not provide adequate preparation to allow for enrollment in higher level PHYS courses. Additionally, PHYS 12100 has a prerequisite of a year of chemistry. Special petition to the department counselor is required for PHYS 12100-12200-12300 approval.
% Biological Evolution-Advanced has several cross-listings. Geophysical Sciences majors must register for it under the GEOS 27300 listing.
^ PHYS 12300 can be replaced by PHYS 12400, which is part of the Marine Biological Laboratory Spring Quarter Program. For more information, see https://college.uchicago.edu/academics/spring-quarter-mbl.
Candidates for the BS in Geophysical Sciences complete a year of chemistry, a year of physics, a year of mathematics (including Calculus I-II), and a year of biology (GEOS 27300 Biological Evolution-Advanced and BIOS 20198 Biodiversity).

The requirement for the third quarter of mathematics may be satisfied by either completing the calculus sequence (recommended for students taking the more introductory MATH 13000s sequence but not specifically required or recommended for the higher tracks such as MATH 15000s, as the first two quarters offer a sufficiently comprehensive calculus training for students to move on to other courses) or taking one of the designated mathematical methods courses instead. In addition, students must complete two elective courses from Computational Sciences (List 2). The requirements are structured to allow and encourage students to complete sequences that extend through the study of differential equations.

Students are encouraged to begin discipline-specific courses as early as possible. Required disciplinary courses include GEOS 13100 Physical Geology, GEOS 13200 Earth History, and GEOS 13300 The Atmosphere, which is the introductory sequence.

A minimum of eight additional 20000-level science courses are required. At least four must be GEOS courses from List 1. Up to three may be chosen from other science courses in List 1. Up to two may be chosen from Computational Sciences (List 2). One may be a field course. One may be GEOS 29700 Reading and Research in the Geophysical Sciences.

Summary of Requirements for the BS in Geophysical Sciences

<table>
<thead>
<tr>
<th>GENERAL EDUCATION</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following sequences:</td>
<td>200</td>
</tr>
<tr>
<td>CHEM 10100 & CHEM 10200</td>
<td>Introductory General Chemistry I and Introductory General Chemistry II</td>
</tr>
<tr>
<td>CHEM 11100-11200</td>
<td>Comprehensive General Chemistry I-II *</td>
</tr>
<tr>
<td>CHEM 12100 & CHEM 12200</td>
<td>Honors General Chemistry I and Honors General Chemistry II</td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td>200</td>
</tr>
<tr>
<td>MATH 13100-13200</td>
<td>Elementary Functions and Calculus I-II *</td>
</tr>
<tr>
<td>MATH 15100-15200</td>
<td>Calculus I-II</td>
</tr>
<tr>
<td>MATH 16100-16200</td>
<td>Honors Calculus I-II</td>
</tr>
<tr>
<td>Both of the following: **</td>
<td>200</td>
</tr>
<tr>
<td>BIOS 20198</td>
<td>Biodiversity</td>
</tr>
<tr>
<td>GEOS 27300</td>
<td>Biological Evolution-Advanced %</td>
</tr>
<tr>
<td>Total Units</td>
<td>600</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJOR</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 13100 & GEOS 13200 & GEOS 13300</td>
</tr>
<tr>
<td>CHEM 11300 or CHEM 12300</td>
</tr>
<tr>
<td>Honors General Chemistry III</td>
</tr>
<tr>
<td>One of the following sequences:</td>
</tr>
<tr>
<td>PHYS 12100-12200-12300</td>
</tr>
<tr>
<td>PHYS 13100-13200-13300</td>
</tr>
<tr>
<td>PHYS 14100-14200-14300</td>
</tr>
<tr>
<td>One of the following:</td>
</tr>
<tr>
<td>MATH 18300</td>
</tr>
<tr>
<td>MATH 20250</td>
</tr>
<tr>
<td>BIOS 20152 or BIOS 20151</td>
</tr>
<tr>
<td>MATH 13300</td>
</tr>
<tr>
<td>MATH 15300</td>
</tr>
<tr>
<td>MATH 16300</td>
</tr>
<tr>
<td>Two Computational Sciences courses from List 2</td>
</tr>
<tr>
<td>Eight electives as follows: †</td>
</tr>
</tbody>
</table>
Four courses designated GEOS from List 1: Physical and Biological Sciences
Four additional courses from List 1: Physical and Biological Sciences and/or List 2: Computational Sciences, but only up to three courses may be non-GEOS courses from List 1 and only up to two courses may be from List 2.

| Total Units | 1800 |

* Credit may be granted by examination.
** Only Environmental Science and Geophysical Sciences majors may use this pairing to satisfy the general education requirement in the biological sciences. Geophysical Sciences majors can take these courses without the Biological Sciences prerequisites (BIOS 20153-20151) unless they pursue a double major in Biological Sciences. They are expected to show competency in mathematical modeling of biological phenomena covered in BIOS 20151.
† Only one of these electives may be a field course (GEOS 29001, GEOS 29002, GEOS 29005) and only one of these electives may be GEOS 29700 Reading and Research in the Geophysical Sciences.
§ PHYS 13100-13200-13300 or PHYS 14100-14200-14300 are the preferred courses. PHYS 12100-12200-12300 is allowable on a case-by-case basis but may not provide adequate preparation to allow for enrollment in higher level PHYS courses. Additionally, PHYS 12100 has a prerequisite of a year of chemistry. Special petition to the department counselor is required for PHYS 12100-12200-12300 approval.
¶ Biological Evolution-Advanced has several cross-listings. Geophysical Science majors must register for it under the GEOS 27300 listing.

LISTS OF ELECTIVE COURSES 1–2

LIST 1: PHYSICAL AND BIOLOGICAL SCIENCES

<table>
<thead>
<tr>
<th>Geophysical Sciences</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 21000</td>
<td>Mineralogy</td>
</tr>
<tr>
<td>GEOS 21005</td>
<td>Mineral Science</td>
</tr>
<tr>
<td>GEOS 21100</td>
<td>Introduction to Petrology</td>
</tr>
<tr>
<td>GEOS 21200</td>
<td>Physics of the Earth</td>
</tr>
<tr>
<td>GEOS 21205</td>
<td>Introduction to Seismology, Earthquakes, and Near-Surface Earth Seismicity</td>
</tr>
<tr>
<td>GEOS 21210</td>
<td>Global Seismology</td>
</tr>
<tr>
<td>GEOS 21400</td>
<td>Thermodynamics and Phase Change</td>
</tr>
<tr>
<td>GEOS 22000</td>
<td>Origin and Evolution of the Solar System</td>
</tr>
<tr>
<td>GEOS 22040</td>
<td>Planet Formation in the Galaxy I: From Dust to Planetesimals</td>
</tr>
<tr>
<td>GEOS 22050</td>
<td>Planet Formation in the Galaxy II: From Planetesimals to Planets</td>
</tr>
<tr>
<td>GEOS 22060</td>
<td>What Makes a Planet Habitable?</td>
</tr>
<tr>
<td>GEOS 22200</td>
<td>Geochronology</td>
</tr>
<tr>
<td>GEOS 22600</td>
<td>Topics in Earth Science: The Accretion of Extraterrestrial Matter Throughout Earth’s History</td>
</tr>
<tr>
<td>GEOS 22700</td>
<td>Analytical Techniques in Geochemistry</td>
</tr>
<tr>
<td>GEOS 23205</td>
<td>Introductory Glaciology</td>
</tr>
<tr>
<td>GEOS 23600</td>
<td>Chemical Oceanography</td>
</tr>
<tr>
<td>GEOS 23800</td>
<td>Global Biogeochemical Cycles</td>
</tr>
<tr>
<td>GEOS 23900</td>
<td>Environmental Chemistry</td>
</tr>
<tr>
<td>GEOS 24220</td>
<td>Climate Foundations</td>
</tr>
<tr>
<td>GEOS 24230</td>
<td>Geophysical Fluid Dynamics: Foundations</td>
</tr>
<tr>
<td>GEOS 24240</td>
<td>Geophysical Fluid Dynamics: Rotation and Stratification</td>
</tr>
<tr>
<td>GEOS 24250</td>
<td>Geophysical Fluid Dynamics: Understanding the Motions of the Atmosphere and Oceans</td>
</tr>
<tr>
<td>GEOS 24300</td>
<td>Paleoclimatology</td>
</tr>
<tr>
<td>GEOS 24705</td>
<td>Energy: Science, Technology, and Human Usage</td>
</tr>
<tr>
<td>GEOS 24800</td>
<td>Climate Systems Engineering</td>
</tr>
<tr>
<td>GEOS 25400</td>
<td>Intro to Numerical Techniques for Geophysical Sciences</td>
</tr>
<tr>
<td>GEOS 26100</td>
<td>Phylogenetics and the Fossil Record</td>
</tr>
<tr>
<td>GEOS 26300</td>
<td>Invertebrate Paleobiology and Evolution</td>
</tr>
<tr>
<td>GEOS 26600</td>
<td>Geobiology</td>
</tr>
<tr>
<td>GEOS 26650</td>
<td>Environmental Microbiology</td>
</tr>
<tr>
<td>GEOS 26905</td>
<td>Topics in Conservation Paleobiology</td>
</tr>
</tbody>
</table>
Field Courses in Geophysical Sciences

The department sponsors field trips that range in length from one day to several weeks. Shorter field trips typically form part of lecture-based courses and are offered each year. (The trips are open to all students and faculty if space permits.) Longer trips are designed as undergraduate field courses, and one such course may be used as an elective science course for the major. Destinations of field courses have recently included Baja California, Death Valley, Nevada, Salton Trough, Newfoundland, and the Bahamas.

GEOS 29001 Field Course in Geology 100
GEOS 29002 Field Course in Modern and Ancient Environments 100

Astronomy and Astrophysics

ASTR 24100 The Physics of Stars 100

Biological Sciences

BIOS 20188 Fundamentals of Physiology 100
BIOS 20189 Fundamentals of Developmental Biology 100
BIOS 20196 Ecology and Conservation 100
BIOS 20200 Introduction to Biochemistry 100
BIOS 22250 Chordates: Evolution and Comparative Anatomy 100
BIOS 23262 Mammalian Evolutionary Biology 100
BIOS 23266 Evolutionary Adaptation 100
BIOS 23289 Marine Ecology 100
BIOS 23404 Reconstructing the Tree of Life: An Introduction to Phylogenetics 100
BIOS 23406 Biogeography 100
BIOS 25206 Fundamentals of Bacteria 100
BIOS 27751 Biological Oceanography 100

*This course is part of the Marine Biological Laboratory Spring Quarter Program. For more information, see https://college.uchicago.edu/academics/spring-quarter-mbl.

Semester in Environmental Science/Marine Biological Laboratory

The following courses are the College designations for the Semester in Environmental Science that is taught at the Marine Biological Laboratory (MBL) in Woods Hole, Massachusetts. Registration in ENSC 23820 Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory, ENSC 24100 Ecology - Marine Biological Laboratory, and ENSC 29800 Independent Undergraduate Research in Environmental Sciences Marine Biological Laboratory, plus one of ENSC 24200 Methods in Microbial Ecology - Marine Biological Laboratory, ENSC 24300 Roles of Animals in Ecosystems # Marine Biological Laboratory, or ENSC 28100 Quantitative Environmental Analyses # Marine Biological Laboratory is required. ENSC 28100 Quantitative Environmental Analyses # Marine Biological Laboratory would count as a List 2 elective. Admission to the Semester in Environmental Science program is by application, which must be received by the MBL generally in March of the year preceding the start of the semester. Admissions decisions will generally be sent in April. Note that these courses start at the beginning of September, typically four weeks prior to the start of the College’s Autumn Quarter, and are completed by the end of Autumn Quarter. More information on the course content, the application process, and deadlines can be found at college.uchicago.edu/academics/semester-environmental-science. Students participating in the Semester in Environmental Science receive credit for four courses in environmental science.

ENSC 23820 Biogeochemical Analysis in Terrestrial and Aquatic Ecosystems # Marine Biological Laboratory 100
ENSC 24100 Ecology - Marine Biological Laboratory 100
ENSC 24200 Methods in Microbial Ecology - Marine Biological Laboratory * 100
ENSC 24300 Roles of Animals in Ecosystems # Marine Biological Laboratory 100
ENSC 29800 Independent Undergraduate Research in Environmental Sciences Marine Biological Laboratory 100

* Substitutes for the List 1 course GEOS 26650 Environmental Microbiology. Students cannot get credit for taking both.

Chemistry
CHEM 20100 Inorganic Chemistry I 100
CHEM 20200 Organometallic Chemistry 100
CHEM 22000 Organic Chemistry I 100
CHEM 22100 Organic Chemistry II 100
CHEM 22200 Organic Chemistry III 100
CHEM 26100 Introductory Quantum Mechanics 100
CHEM 26200 Thermodynamics 100
CHEM 26300 Chemical Kinetics and Dynamics 100
CHEM 26700 Experimental Physical Chemistry † 100

† requires CHEM 26100

Physics
PHYS 18500 Intermediate Mechanics 100
PHYS 22500 Intermediate Electricity and Magnetism I 100
PHYS 22600 Electronics 100
PHYS 22700 Intermediate Electricity and Magnetism II 100

LIST 2: COMPUTATIONAL SCIENCES

Semester in Environmental Science/MBL
ENSC 28100 Quantitative Environmental Analyses # Marine Biological Laboratory ** 100

Mathematics
MATH 15910 Introduction to Proofs in Analysis 100
or STAT 24300 Numerical Linear Algebra
MATH 18300 Mathematical Methods in the Physical Sciences I 100
MATH 18400 Mathematical Methods in the Physical Sciences II 100
MATH 18500 Mathematical Methods in the Physical Sciences III 100
MATH 20250 Abstract Linear Algebra 100
MATH 20300 Analysis in Rn I 100
MATH 20400 Analysis in Rn II 100
MATH 20500 Analysis in Rn III 100
MATH 20310 Analysis in Rn I (accelerated) 100
MATH 20410 Analysis in Rn II (accelerated) 100
MATH 20510 Analysis in Rn III (accelerated) 100
MATH 21100 Basic Numerical Analysis 100
MATH 27000 Basic Complex Variables 100
MATH 27300 Basic Theory of Ordinary Differential Equations 100
MATH 27500 Basic Theory of Partial Differential Equations 100
MATH 38300 Numerical Solutions to Partial Differential Equations 100

Biological Sciences
BIOS 20152 Introduction to Quantitative Modeling in Biology (Advanced) 100
or BIOS 20151 Introduction to Quantitative Modeling in Biology

Statistics
Any course in statistics at the 22000 level or higher. Some recommendations follow:
STAT 22000 Statistical Methods and Applications * † ‡ 100
or STAT 23400 Statistical Models and Methods
STAT 22400 Applied Regression Analysis 100
STAT 22600 Analysis of Categorical Data 100
STAT 24400 Statistical Theory and Methods I 100
STAT 24500 Statistical Theory and Methods II 100
STAT 26100 Time Dependent Data 100

Computing
CMSC 14100 Introduction to Computer Science I 100
CMSC 14200 Introduction to Computer Science II 100
CMSC 23710 Scientific Visualization 100
CMSC 28510 Introduction to Scientific Computing 100

Geographic Information Systems
GISC 28200 Spatial Analysis Methods in Geographic Information Systems 100
GISC 28300 Topics in Geographic Information Science 100
GISC 28702 Introduction to GIS and Spatial Analysis 100

* AP credit for STAT 22000 does not count toward the major requirements. Students with AP credit for STAT 22000 should plan to take at least one other course from List 2 (BA program) or two other courses from List 2 (BS program).
** This is not a stand-alone course, but part of the Semester in Environmental Science/MBL.
†† STAT 23400 has a higher programming component than STAT 22000
‡‡ Recommended for advanced students. Must be taken as a sequence to be credited. STAT 24400-24500 have no prerequisite but it is possible to take both STAT 24400 and STAT 24400-24500.

GRADING
Students majoring in geophysical sciences must receive quality grades in all courses taken to meet requirements in the major.

HONORS
The BA or BS degree with honors is awarded to students who meet the following requirements: (1) a GPA of 3.25 or higher in the major and of 3.0 or higher overall; (2) completion of a paper based on original research, supervised and approved by a faculty member in geophysical sciences; (3) an oral presentation of the thesis research. All theses will be examined by the supervisor and a second reader from the faculty. Manuscript drafts will generally be due in the sixth week of the quarter in which the student will graduate (fifth week in Summer Quarter), and final manuscripts and oral presentations in the eighth week (seventh week in Summer Quarter).

Students are strongly encouraged to reach out to potential faculty supervisors no later than their third year, since theses generally arise out of research projects already begun with faculty members. When a thesis topic is determined, students should notify the undergraduate adviser of their intent to complete a thesis and confirm their eligibility. GEOS 29700 Reading and Research in the Geophysical Sciences can be devoted to the preparation of the required paper; however, students using this course to meet a requirement in the major must take it for a quality grade.

Students who wish to submit a single paper to meet the honors requirement in geophysical sciences and the BA paper requirement in another major should discuss their proposals with the undergraduate advisers from both programs no later than the end of third year. Certain requirements must be met. A consent form, to be signed by the undergraduate advisers, is available from the College adviser. It must be completed and returned to the College adviser by the end of Autumn Quarter of the student’s year of graduation.

SAMPLE BS PROGRAMS
Each student will design an individual plan of course work, choosing from a wide range of selections that take advantage of rich offerings from a variety of subdisciplines. The sample programs that appear below are merely for the purpose of illustration; many other variations would be possible. NOTE: Courses that meet general education requirements and are required for the major are not listed.

Environmental Geochemistry
CHEM 26200 Thermodynamics 100
CHEM 26300 Chemical Kinetics and Dynamics 100
GEOS 21000 Mineralogy 100
GEOS 23600 Chemical Oceanography 100
GEOS 23800 Global Biogeochemical Cycles 100
GEOS 23900 Environmental Chemistry 100
GEOS 26650 Environmental Microbiology 100
GEOS 28300 Time in Stratigraphy 100
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>GEOS 25400</td>
<td>Intro to Numerical Techniques for Geophysical Sciences</td>
<td>100</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
<td>100</td>
</tr>
<tr>
<td>Geochemistry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CHEM 26100</td>
<td>Introductory Quantum Mechanics</td>
<td>100</td>
</tr>
<tr>
<td>CHEM 26200</td>
<td>Thermodynamics</td>
<td>100</td>
</tr>
<tr>
<td>CHEM 26300</td>
<td>Chemical Kinetics and Dynamics</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21000</td>
<td>Mineralogy</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21100</td>
<td>Introduction to Petrology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22200</td>
<td>Geochronology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 23600</td>
<td>Chemical Oceanography</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 23800</td>
<td>Global Biogeochemical Cycles</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 23900</td>
<td>Environmental Chemistry</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18300</td>
<td>Mathematical Methods in the Physical Sciences I</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18400</td>
<td>Mathematical Methods in the Physical Sciences II</td>
<td>100</td>
</tr>
<tr>
<td>Geophysics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CMSC 12100</td>
<td>Computer Science with Applications I</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 12200</td>
<td>Computer Science with Applications II</td>
<td>100</td>
</tr>
<tr>
<td>CMSC 12300</td>
<td>Computer Science with Applications III</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21000</td>
<td>Mineralogy</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21100</td>
<td>Introduction to Petrology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21200</td>
<td>Physics of the Earth</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21205</td>
<td>Introduction to Seismology, Earthquakes, and Near-Surface Earth Seismicity</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 28100</td>
<td>Global Tectonics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 18500</td>
<td>Intermediate Mechanics</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 22100</td>
<td>Mathematical Methods in Physics</td>
<td>100</td>
</tr>
<tr>
<td>Paleontology</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BIOS 23289</td>
<td>Marine Ecology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 21000</td>
<td>Mineralogy</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 26100</td>
<td>Phylgenetics and the Fossil Record</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 26300</td>
<td>Invertebrate Paleobiology and Evolution</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 26600</td>
<td>Geobiology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 28000</td>
<td>Introduction to Structural Geology</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 28300</td>
<td>Time in Stratigraphy</td>
<td>100</td>
</tr>
<tr>
<td>STAT 22400</td>
<td>Applied Regression Analysis</td>
<td>100</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
<td>100</td>
</tr>
<tr>
<td>Physics of Climate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS 22060</td>
<td>What Makes a Planet Habitable?</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 23800</td>
<td>Global Biogeochemical Cycles</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 24220</td>
<td>Climate Foundations</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 24230</td>
<td>Geophysical Fluid Dynamics: Foundations</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 24240</td>
<td>Geophysical Fluid Dynamics: Rotation and Stratification</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 24250</td>
<td>Geophysical Fluid Dynamics: Understanding the Motions of the Atmosphere and Oceans</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 25400</td>
<td>Intro to Numerical Techniques for Geophysical Sciences</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18300</td>
<td>Mathematical Methods in the Physical Sciences I</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18400</td>
<td>Mathematical Methods in the Physical Sciences II</td>
<td>100</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
<td>100</td>
</tr>
<tr>
<td>Planetary Science</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GEOS 21200</td>
<td>Physics of the Earth</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22000</td>
<td>Origin and Evolution of the Solar System</td>
<td>100</td>
</tr>
<tr>
<td>GEOS 22060</td>
<td>What Makes a Planet Habitable?</td>
<td>100</td>
</tr>
</tbody>
</table>
GEOPHYSICAL SCIENCES COURSES

GEOS 13100. Physical Geology. 100 Units.
This course introduces plate tectonics; the geologic cycle; and the internal and surface processes that make minerals and rocks, as well as that shape the scenery. Topics include: plate tectonics; Earth structure; natural hazards including earthquakes and volcanoes; crustal deformation and mountain building; and surface processes (erosion, groundwater). Laboratory exercises introduce identifying features of rocks and minerals, and interpreting geological maps. (L)
Instructor(s): E. Kite Terms Offered: Autumn. Taught in Winter Quarter in AY 2022-23

GEOS 13200. Earth History. 100 Units.
This course covers principles of historical inference in Earth science; the physical, chemical, and biological data that are used to reconstruct Earth history; and the geographic, biotic, and environmental development of Earth. Weekly labs focus on observation and interpretation of sedimentary rocks and fossil assemblages in hand samples. (L)
Instructor(s): M. Foote; G. Slater Terms Offered: Winter
Prerequisite(s): GEOS 13100
Equivalent Course(s): ENSC 13300, ENST 13300

GEOS 13300. The Atmosphere. 100 Units.
This course introduces the physics, chemistry, and phenomenology of the Earth's atmosphere, with an emphasis on the fundamental science that underlies atmospheric behavior and climate. Topics include (1) atmospheric composition, evolution, and structure; (2) solar and terrestrial radiation in the atmospheric energy balance; (3) the role of water in determining atmospheric structure; and (4) wind systems, including the global circulation, and weather systems.
Instructor(s): T. Shaw; N. Nakamura Terms Offered: Spring
Prerequisite(s): MATH 13100-MATH 13200
Equivalent Course(s): ENSC 13300, ENST 13300

GEOS 13400. Global Warming: Understanding the Forecast. 100 Units.
The future of human civilization depends on its ability to avoid, or adapt to, climate change associated with fossil-fuel (carbon) emissions. With so much at stake, it is important that citizens of the world understand the science which forms the foundation of what is understood about global climate change. The learning objectives of this course are to develop understanding of: (1) the historical and pre-historical records of global climate change, (2) the Earth's carbon budget, (3) how the greenhouse effect determines temperature in Earth's atmosphere and at the land and sea surface, (4) how climate projections are made, and (5) how present-day activities, both in the scientific research realm and in the socio-economic/political realm are shaping what will happen in the future. Course activity is partitioned into lectures (given by the course instructor), weekly laboratory-section activity (run by graduate teaching assistants), outside reading, and occasional homework. Assessment leading to a course grade will focus primarily on student performance in completing laboratory exercises and on a midterm and final exam. (L)
Instructor(s): D. MacAyeal Terms Offered: Autumn
Equivalent Course(s): ENST 12300, ENSC 13400, PHSC 13400

GEOS 13410. Global Warming: Understanding the Forecast (Flipped Class) 100 Units.
This course presents the science behind the forecast of global warming to enable the student to evaluate the likelihood and potential severity of anthropogenic climate change in the coming centuries. It includes an
overview of the physics of the greenhouse effect, including comparisons with Venus and Mars; predictions and reliability of climate model forecasts of the greenhouse world. This course is part of the College Course Cluster program, Climate Change, Culture, and Society. This course covers the same material as PHSC 13400, but is organized using a flipped classroom approach in order to increase student engagement and learning.

Instructor(s): D. Abbot
Terms Offered: Autumn Spring
Prerequisite(s): Some knowledge of chemistry or physics helpful.
Equivalent Course(s): ENSC 13410, PHSC 13410, ENST 13410

GEOS 13900. Biological Evolution. 100 Units.
This course is an introduction to evolutionary processes and patterns in present-day organisms and in the fossil record and how they are shaped by biological and physical forces. Topics emphasize evolutionary principles. They include DNA and the genetic code, the genetics of populations, the origins of species, and evolution above the species level. We also discuss major events in the history of life, such as the origin of complex cells, invasion of land, and mass extinction. This course is part of the College Course Cluster program: Climate Change, Culture and Society. (L)

Instructor(s): D. Jablonski
Terms Offered: Winter
Prerequisite(s): BIOS 10130 or BIOS 10140
Note(s): No Biological Sciences majors except by petition to the BSCD Senior Advisers. Due to significant overlap of course content, students may register for only one of PHSC 11000, BIOS 12117, or GEOS 13900/BIOS 13123. Students using this course for credit in the GEOS or ENSC major register for GEOS 27300; additional work, including a term paper, will be required.
Equivalent Course(s): BIOS 13123

GEOS 21000. Mineralogy. 100 Units.
This course covers structure, chemical composition, stability, and occurrence of major rock-forming minerals. Labs concentrate on mineral specimen identification and optical microscopy. (L)

Instructor(s): D. Heinz
Terms Offered: Autumn
Prerequisite(s): CHEM 10100 & 10200 or equivalent
Equivalent Course(s): GEOS 31000

GEOS 21005. Mineral Science. 100 Units.
This course examines the physics and chemistry of minerals, and their relationship with mineral structure. Topics may include mineral thermodynamics, crystallography, defect properties, phase transitions, analytical tools, and detailed study of specific mineral groups.

Instructor(s): A. Campbell
Terms Offered: Winter. Offered every other year.
Prerequisite(s): GEOS 21000 or consent of instructor
Equivalent Course(s): GEOS 31005

GEOS 21100. Introduction to Petrology. 100 Units.
Students in this course learn how to interpret observable geological associations, structures, textures, and mineralogical and chemical compositions of rocks so as to develop concepts of how they form and evolve. Our theme is the origin of granitic continental crust on the only planet known to have oceans and life. Igneous, sedimentary, and metamorphic rocks; ores; and waste disposal sites are reviewed. (L)

Instructor(s): N. Dauphas
Terms Offered: Spring
Prerequisite(s): GEOS 21000 is strongly recommended.

GEOS 21200. Physics of the Earth. 100 Units.
This course considers geophysical evidence bearing on the internal makeup and dynamical behavior of the Earth, including seisimology (i.e., properties of elastic waves and their interpretation, and internal structure of the Earth); mechanisms of rock deformation (i.e., elastic properties, creep and flow of rocks, faulting, earthquakes); gravity (i.e., geoid, isostasy); geomagnetism (i.e., magnetic properties of rocks and history, origin of the magnetic field); heat flow (i.e., temperature within the Earth, sources of heat, thermal history of the Earth); and plate tectonics and the maintenance of plate motions. (L)

Instructor(s): D. Heinz
Terms Offered: Spring
Prerequisite(s): Prior calculus and college-level physics courses, or consent of instructor.
Equivalent Course(s): GEOS 31200

GEOS 21210. Global Seismology. 100 Units.
This course covers theories of seismic wave propagation and fundamental concepts of global seisimology. Topics include stress/strain, wave equation, ray theory, surface waves, earthquake source, etc.

Instructor(s): S. Park
Terms Offered: Winter
Prerequisite(s): Multivariable calculus (e.g., MATH 15300) and mechanics (e.g., PHYS 13100). If not, permission of instructor.
Equivalent Course(s): GEOS 31210

GEOS 21400. Thermodynamics and Phase Change. 100 Units.
This course develops the thermodynamics of minerals, with emphasis on relations between thermodynamic variables and equations of state. Geological and geochemical applications include homogeneous and heterogeneous phase equilibrium, culminating in the construction of representative multicomponent phase diagrams of petrological significance, and fluid-rock interactions.
Instructor(s): A. Campbell Terms Offered: Winter
Prerequisite(s): College-level chemistry and calculus.
Equivalent Course(s): GEOS 31400

GEOS 21900. Intro To Structural Geology. 100 Units.
This course explores the deformation of the Earth materials primarily as observed in the crust. We emphasize stress and strain and their relationship to incremental and finite deformation in crustal rocks, as well as techniques for inferring paleostress and strain in deformed crustal rocks. We also look at mesoscale to macroscale structures and basic techniques of field geology in deformed regions.
Instructor(s): D. Rowley Terms Offered: Autumn
Prerequisite(s): GEOS 21900, GEOS 31400

GEOS 22060. What Makes a Planet Habitable? 100 Units.
This course explores the factors that determine how habitable planets form and evolve. We will discuss a range of topics, from the formation of planets around stars and the delivery of water, to the formation of atmospheres, climate dynamics, and the conditions that allow for the development of life and the evolution of complex life. Students will be responsible for periodically preparing presentations based on papers in peer-reviewed journals and leading the discussion.
Instructor(s): E. Kite Terms Offered: Winter
Equivalent Course(s): ASTR 22060, GEOS 32060, ASTR 32060

GEOS 22200. Geochronology. 100 Units.
This course covers the duration of planetary differentiation and the age of the Earth (i.e., extinct and extant chronometers); timescales for building a habitable planet (i.e., the late heavy bombardment, the origin of the atmosphere, the emergence of life, and continent extraction); dating mountains (i.e., absolute ages, exposure ages, and thermochronology); the climate record (i.e., dating layers in sediments and ice cores); and dating recent artifacts (e.g., the Shroud of Turin). (L)
Instructor(s): N. Dauphas Terms Offered: Autumn
Equivalent Course(s): GEOS 32200

GEOS 22600. Topics in Earth Science: The Accretion of Extraterrestrial Matter Throughout Earth’s History. 100 Units.
This course will provide a discussion of the nature and variability of extraterrestrial (ET) matter accreted throughout Earth’s history that is preserved in the geological record. This record is a rich archive of ET matter whose study not only provides unique insight into the origin and evolution of different Solar System objects but also enables a better understanding of delivery mechanisms. The course will highlight periods of dramatically increased accretion rates and important impact events. This includes events such as the recent Chelyabinsk and Tunguska air blasts, the “global killer” Chicxulub impact 66 Ma ago, the Ordovician meteorite showers, all the way to cataclysmic events that occurred on early Earth. The course will also provide an introduction to related key techniques such as classification with material from the meteorite collection, the identification of impact craters, and the use of tracers of ET material in the geological record.
Instructor(s): P. Heck Terms Offered: Autumn
Prerequisite(s): Background in college-level geology, physics, and mathematics
Equivalent Course(s): GEOS 32600

GEOS 22700. Analytical Techniques in Geochemistry. 100 Units.
Modern geochemistry requires the use of many sophisticated laboratory instruments. The idea behind GEOS 32700 is to survey the major types of instrumentation used in geochemistry laboratories, including mass spectrometers, electron microscopes, x-ray microanalysis, DNA sequencing, etc. Students should come away from the course with a better appreciation of the inner workings of these instruments rather than treating them as black boxes. As a laboratory portion of the course, students will be trained and do a project using the TESCAN SEM-FIB in the Department of the Geophysical Sciences. The course is open to graduate students and advanced undergraduates.
Instructor(s): A. Davis Terms Offered: Autumn
Equivalent Course(s): GEOS 32700

GEOS 23600. Chemical Oceanography. 100 Units.
This course explores the chemistry of the ocean system and its variations in space and time. The oceans play an essential role in most (bio)geochemical cycles, interacting in various ways with the atmosphere, sediments, and crust. These interactions can be understood through studying the geochemical and isotopic properties of the ocean, its inputs and outputs, and its evolution as recorded in marine sediments and sedimentary rocks. Topics include: the marine carbon cycle, nutrient cycling, chemical sediments, and hydrothermal systems.
Instructor(s): C. Blättler Terms Offered: Spring
Prerequisite(s): Completion of one of the following Chemistry Sequences: CHEM 10100-10200-11300 Introductory General Chemistry I-II; Comprehensive General Chemistry III or CHEM 11100-11200-11300 Comprehensive General Chemistry I-II-III or CHEM 12100-12200-12300 Honors General Chemistry I-II-III AND either GEOS 13100 or GEOS 13200.
Equivalent Course(s): CHEM 23600, GEOS 33600, ENSC 23600
GEOS 23800. Global Biogeochemical Cycles. 100 Units.
This survey course covers the geochemistry of the surface of the Earth, focusing on biological and geological processes that shape the distributions of chemical species in the atmosphere, oceans, and terrestrial habitats. Budgets and cycles of carbon, nitrogen, oxygen, phosphorous, and sulfur are discussed, as well as chemical fundamentals of metabolism, weathering, acid-base and dissolution equilibria, and isotopic fractionation. The course examines the central role that life plays in maintaining the chemical disequilibria that characterize Earth's surface environments. The course also explores biogeochemical cycles change (or resist change) over time, as well as the relationships between geochemistry, biological (including human) activity, and Earth's climate.
Prerequisite(s): CHEM 11100-11200 or consent of instructor
Equivalent Course(s): GEOS 34230

GEOS 23900. Environmental Chemistry. 100 Units.
The focus of this course is the fundamental science underlying issues of local and regional scale pollution. In particular, the lifetimes of important pollutants in the air, water, and soils are examined by considering the roles played by photochemistry, surface chemistry, biological processes, and dispersal into the surrounding environment. Specific topics include urban air quality, water quality, long-lived organic toxins, heavy metals, and indoor air pollution. Control measures are also considered. This course is part of the College Course Cluster program: Climate Change, Culture, and Society.
Instructor(s): D. Archer
Prerequisite(s): CHEM 11100-11200 or equivalent, and prior calculus course
Equivalent Course(s): ENST 23900, ENSC 23900, GEOS 33900

GEOS 24220. Climate Foundations. 100 Units.
This course introduces the basic physics governing the climate of the planet, the Earth in particular but with some consideration of other planets. Topics include atmospheric thermodynamics of wet and dry atmospheres, the hydrological cycle, blackbody radiation, molecular absorption in the atmosphere, the basic principles of radiation balance, and diurnal and seasonal cycles. Students solve problems of increasing complexity, moving from pencil-and-paper problems to programming exercises, to determine surface and atmospheric temperatures and how they evolve. An introduction to scientific programming is provided, but the fluid dynamics of planetary flows is not covered. This course is part of the College Course Cluster program: Climate Change, Culture, and Society.
Instructor(s): E. Moyer
Prerequisite(s): Prior physics course (preferably PHYS 13300 and 14300) and knowledge of calculus required. Prior programming experience helpful but not required.
Equivalent Course(s): GEOS 34220

GEOS 24230. Geophysical Fluid Dynamics: Foundations. 100 Units.
This course is for incoming graduate students in physical sciences intending to take further courses in geophysical fluid dynamics, fluid dynamics, condensed matter physics, and other areas requiring this fundamental skill set. It sets the stage for follow-on courses that present the detail of the behavior of fluids and continuums in geophysical, physical, chemical, and other settings. The material may be a student's first contact with continuum mechanics or a remedial or review for students who have previously taken similar courses. Topics include description of material properties in a continuum, including displacement, velocity, and strain rate; scalar, vector, and tensor properties of continuums, strain, strain rate, and stress; derivations and understanding of mass, momentum, and energy conservation principles in a continuum; applications of conservation principles to simple rheological idealizations, including ideal fluids and potential flow, viscous fluids and Navier-Stokes flow, elasticity and deformation; introductory asymptotic analysis, Reynolds number; heat transfer by conduction and convection, convective instability, Rayleigh number; fluids in gravitational fields, stratification, buoyancy; elliptic, parabolic, and hyperbolic partial differential equations, typical properties of each. Prerequisite(s): Vector calculus, linear algebra, advanced classical mechanics, basic knowledge of computing. Undergrads who take this course should intend to complete a second fluid-dynamics course in Geophysical Sciences.
Instructor(s): N. Nakamura
Prerequisite(s): Vector calculus, linear algebra, advanced classical mechanics, basic knowledge of computing.
Undergrads who take this course should intend to complete a second fluid-dynamics course in Geophysical Sciences.
Equivalent Course(s): GEOS 34230

GEOS 24240. Geophysical Fluid Dynamics: Rotation and Stratification. 100 Units.
This course is an introduction to geophysical fluid dynamics for upper-level undergraduates and starting graduate students. The topics covered will be the equations of motion, the effects of rotation and stratification, shallow water systems and isentropic coordinates, vorticity and potential vorticity, and simplified equations for the ocean and atmosphere.
Instructor(s): M. Jansen
Prerequisite(s): PQ: GEOS 24230 or equivalent; Knowledge of mechanics (PHYS 13100 or equivalent), thermodynamics (PHYS 19700 or equivalent), vector calculus and linear algebra (MATH 20000-20100-20200 or equivalent)
Equivalent Course(s): GEOS 34240
GEOS 24250. Geophysical Fluid Dynamics: Understanding the Motions of the Atmosphere and Oceans. 100 Units.
This course is part of the atmospheres and oceans sequence (GEOS 24220, 24230, 24240, 24250) and is expected to follow Geophysical Fluid Dynamics: Rotation and Stratification (GEOS 24240). The course demonstrates how the fundamental principles of geophysical fluid dynamics are manifested in the large-scale circulation of the atmosphere and oceans and their laboratory analogs. Topics include: balance of forces and the observed structure of the atmospheric and oceanic circulations, statistical description of the spatially and temporally varying circulation, theory of Hadley circulation, waves in the atmosphere and oceans, baroclinic instability, wind-driven ocean circulation.
Instructor(s): N. Nakamura, D. Yang Terms Offered: Spring
Prerequisite(s): GEOS 24230 and 24240, or consent of the instructor. Knowledge of vector calculus, linear algebra, and ordinary differential equations is assumed.
Equivalent Course(s): GEOS 34250

GEOS 24300. Paleoclimatology. 100 Units.
This class will cover the theory and reconstruction of the evolution of Earth's climate through geologic time. After reviewing fundamental principles that control Earth's climate, the class will consider aspects of the climate reconstructions that need to be explained theoretically, such as the faint young sun paradox, snowball Earth episodes, Pleistocene glacial / interglacial cycles, and long-term Cenozoic cooling. Then we will switch to a temporal point of view, the history of Earth's climate as driven by plate tectonics and biological evolution, and punctuated by mass extinctions. This will allow us to place the theoretical ideas from the first part of the class into the context of time and biological progressive evolution.
Instructor(s): D. Archer Terms Offered: Winter
Prerequisite(s): One quarter of chemistry
Equivalent Course(s): GEOS 34300

GEOS 24600. Introduction to Atmosphere, Ocean, and Climate Modeling. 100 Units.
This hands-on course will discuss how we model atmosphere- ocean- and climate-dynamics using numerical models of varying complexity. We will discuss both the relevant physics as well as numerical techniques, including finite-difference methods for ordinary and partial differential equations, as well as spectral methods.
The primary focus of the course will be on relatively simple models, including 1D energy balance models, radiative-convective columns, and quasi-geostrophic models for atmosphere and ocean dynamics, which can be fully understood and applied in the context of a quarter-long course. We will end with an overview of the physics and numerics used in more complex general circulation and coupled climate models. The course will be structured using a combination of lectures, in-class exercises, and discussion of homework exercises. Homework will include programming exercises as well as simulations and analysis using existing model code.
Instructor(s): M. Jansen Terms Offered: Autumn
Prerequisite(s): Prerequisites: GEOS 24220/34220 “Climate foundations”; knowledge of vector calculus, linear algebra, and partial differential equations; basic knowledge of python (could potentially be replaced by significant programming experience in other languages). Recommended: Geophysical fluid dynamics 24220/34220 and 24240/34240.
Equivalent Course(s): GEOS 34600

GEOS 24705. Energy: Science, Technology, and Human Usage. 100 Units.
This course covers the technologies by which humans appropriate energy for industrial and societal use, from steam turbines to internal combustion engines to photovoltaics. We also discuss the physics and economics of the resulting human energy system: fuel sources and relationship to energy flows in the Earth system; and modeling and simulation of energy production and use. Our goal is to provide a technical foundation for students interested in careers in the energy industry or in energy policy. Field trips required to major energy converters (e.g., coal-fired and nuclear power plants, oil refinery, biogas digester) and users (e.g., steel, fertilizer production). This course is part of the College Course Cluster program: Climate Change, Culture and Society.
Instructor(s): E. Moyer Terms Offered: Spring
Prerequisite(s): Knowledge of physics or consent of instructor
Equivalent Course(s): GEOS 34705, ENSC 21100, CEGU 24705, ENST 24705

GEOS 24800. Climate Systems Engineering. 100 Units.
How might humans use geoscience and engineering to intervene in the climate system with the goal of limiting the impacts of historical carbon emissions? Climate Systems Engineering is the intersection of Climate Systems Science and Systems Engineering. Topics will include (1) solar geoeengineering with a focus on stratospheric aerosols, (2) open-system carbon removal such as the addition of alkalinity to soils or directly to the ocean, and (3) local interventions to reduce glacial melting; along with crosscuts on (4) systems engineering and (5) policy implications. Foundational knowledge of climate-related geoscience is a required prerequisite. About a third of class time will be devoted to student presentations and discussion. Class work includes problem sets, peer-graded technical micro-essays, and a collaborative project.
Instructor(s): D. Keith Terms Offered: Autumn
Prerequisite(s): GEOS 13300 The Atmosphere is required. GEOS 24220 Climate Foundations is strongly recommended.
Equivalent Course(s): ENSC 24800, GEOS 34800
GEOS 25400. Intro to Numerical Techniques for Geophysical Sciences. 100 Units.
This class provides an introduction to different types of numerical techniques used in developing models used in geophysical science research. Topics will include how to interpolate and extrapolate functions, develop functional fits to data, integrate a function, or solve partial differential equations. Students are expected to have some familiarity with computers and programming-programming methods will not be discussed in detail. While techniques will be the focus of the class, we will also discuss the planning needed in developing a model as well as the limitations inherent in such models.
Instructor(s): Ciesla, F. Terms Offered: Winter
Equivalent Course(s): GEOS 35400

GEOS 25600. Getting Something for Nothing. 100 Units.
We can learn an incredible amount about the physical world with simple tools of estimation. So-called Fermi problems involve estimating quantities of interest to within an order of magnitude, or factor of 10, on the “back of an envelope.” There are leanable techniques that we can use to approach these problems. Developing these skills is incredibly useful for physical scientists because it allows us to quickly estimate whether an idea is worth pursuing with expensive resources and time. More generally, order-of-magnitude estimation can keep you from getting fooled by journalists and politicians, or give you a trading edge in a competitive market. Finally, Fermi problems are common in interviews for jobs in finance, consulting, and software. Students in this course will develop techniques to quickly estimate physical science quantities to within an order of magnitude.
Instructor(s): D. Abbot Terms Offered: Spring. This course will first be offered in Spring 2024.
Equivalent Course(s): PHSC 11900

GEOS 26100. Phylogenetics and the Fossil Record. 100 Units.
Phylogenies are branching diagrams that reflect evolutionary relationships. In addition to providing information on the history of life, phylogenies are fundamental to modern methods for studying macroevolutionary and macroecological pattern and process. In the biological sciences, phylogenies are most often inferred from genetic data. In paleobiology, phylogenies can only be inferred from the fossilized remains of morphological structures, and collecting and analyzing morphological data present a different set of challenges. In this course, students will study both traditional and state-of-the-art approaches to inferring phylogenies in the fossil record, from data collection to interpretation. Lectures will explore the statistical underpinnings of phylogenetic methods, as well as their practical implementation in commonly used software. Topics will include: identifying and coding morphological characters, models of morphological evolution, parsimony, maximum likelihood, and bayesian methods, supertree approaches, and integrating time into phylogenetic inference. Fifty percent of the final assessment will come from a research paper due at the end of the quarter.
Instructor(s): G. Slater Terms Offered: Autumn. Course is offered every other year.
Prerequisite(s): BIOS 20197 or equivalent.
Equivalent Course(s): GEOS 36100

GEOS 26300. Invertebrate Paleobiology and Evolution. 100 Units.
This course provides a detailed overview of the morphology, paleobiology, evolutionary history, and practical uses of the invertebrate and microfossil groups commonly found in the fossil record. Emphasis is placed on understanding key anatomical and ecological innovations within each group and interactions among groups responsible for producing the observed changes in diversity, dominance, and ecological community structure through evolutionary time. Labs supplement lecture material with specimen-based and practical application sections. An optional field trip offers experience in the collection of specimens and raw paleontological data. Several “Hot Topics” lectures introduce important, exciting, and often controversial aspects of current paleontological research linked to particular invertebrate groups.
Instructor(s): M. Webster Terms Offered: Autumn
Prerequisite(s): GEOS 13100 and 13200 or equivalent; completion of the general education requirement in the Biological Sciences, or consent of instructor.
Note(s): E.
Equivalent Course(s): GEOS 36300, EVOL 32400, BIOS 23261

GEOS 26600. Geobiology. 100 Units.
Geobiology seeks to elucidate the interactions between life and its environments that have shaped the coevolution of the Earth and the biosphere. The course will explore the ways in which biological processes affect the environment and how the evolutionary trajectories of organisms have in turn been influenced by environmental change. In order to reconstruct the history of these processes, we will examine the imprints they leave on both the rock record and on the genomic makeup of living organisms. The metabolism and evolution of microorganisms, and the biogeochemistry they drive, will be a major emphasis.
Instructor(s): M. Coleman, J. Waldbauer
Prerequisite(s): GEOS 13100-13200-13300 or college-level cell & molecular biology
Equivalent Course(s): GEOS 36600, ENSC 24000
GEOS 26650. Environmental Microbiology. 100 Units.
The objective of this course is to understand how microorganisms alter the geochemistry of their environment. The course will cover fundamental principles of microbial growth, metabolism, genetics, diversity, and ecology, as well as methods used to study microbial communities and activities. It will emphasize microbial roles in elemental cycling, bioremediation, climate, and ecosystem health in a variety of environments including aquatic, soil, sediment, and engineered systems.
Instructor(s): M. Coleman Terms Offered: Autumn
Prerequisite(s): CHEM 11100-11200 and BIOS 20186, BIOS 20197, or BIOS 20198
Equivalent Course(s): ENSC 24500, GEOS 36650

GEOS 27300. Biological Evolution-Advanced. 100 Units.
This course is an overview of evolutionary processes and patterns in present-day organisms and in the fossil record, and how they are shaped by biological and physical forces. Topics emphasize evolutionary principles. They include DNA and the genetic code, the genetics of populations, the origins of species, and evolution above the species level. We also discuss major events in the history of life, such as the origin of complex cells, invasion of land, and mass extinctions. Aimed at Geophysical Sciences and Environmental Science majors, this course differs from GEOS 13900 in requiring a term paper, topic chosen from a list provided by the instructor.
Instructor(s): D. Jablonski Terms Offered: Winter
Prerequisite(s): BIOS 10130
Note(s): No Biological Sciences majors except by petition to the BSCD Senior Advisers

GEOS 28000. Introduction to Structural Geology. 100 Units.
This course explores the deformation of the Earth materials primarily as observed in the crust. We emphasize stress and strain and their relationship to incremental and finite deformation in crustal rocks, as well as techniques for inferring paleostress and strain in deformed crustal rocks. We also look at mesoscale to macroscale structures and basic techniques of field geology in deformed regions. (L)
Instructor(s): Staff Terms Offered: Winter. This course is offered in alternate years.
Prerequisite(s): GEOS 13100
Equivalent Course(s): GEOS 38000

GEOS 28100. Global Tectonics. 100 Units.
This course reviews the spatial and temporal development of tectonic and plate tectonic activity of the globe. We focus on the style of activity at compressive, extensional, and shear margins, as well as on the types of basin evolution associated with each. (L)
Instructor(s): Staff Terms Offered: Autumn Winter. This course is offered in alternate years.
Prerequisite(s): GEOS 13100 or consent of instructor
Equivalent Course(s): GEOS 38100

GEOS 28300. Time in Stratigraphy. 100 Units.
This new version of "principles" focuses on (1) recognizing the elapse of time in local sedimentary records, (2) relative age-correlation of rocks across space, and (3) numerical calibration of geologic time scales, all fundamental to paleobiologic, paleoclimatic, and other geohistorical analysis. Issues include assessing the extent of erosional shredding, which removes record, versus simple omission of new record and condensation and/or time-averaging of geo-historical information; how these local processes figure into establishing the relative age relations of strata preserved in disjunct areas; and the evolution of ideas about boundary-defining attributes and the placement of type localities and golden spikes, with the Anthropocene as a good current example. The course will thus complement rather than overlap geochemistry, surface-process, and field courses on paleo-environmental inference. Entails two lectures per week, a one-day (weekend) field trip to learn methods of data collection, and weekly labs on analysis and interpretation, using the professional literature, and report-writing.
Instructor(s): S. Kidwell Terms Offered: Autumn. This course is offered in alternate years.
Prerequisite(s): GEOS 13100-13200 or equivalent required; GEOS 23500 and/or 28200 recommended
Equivalent Course(s): GEOS 38300

GEOS 28600. Earth and Planetary Surface Processes. 100 Units.
The Class: The focus of this course is geomorphology, both of the Earth and of other planets. Moving from the controls on planetary-scale topography down to the scale of individual streams and hillslopes, the course will emphasize fluvial and aeolian sediment transport, and landscape evolution, with ~5 labs during the quarter. The Field Trip: Trip dates: 10 March 2024 (arrive) - 16 March 2024 (depart). The field trip will include some hiking, but camping gear is not required. Accommodation will be at SHEAR (Shoshone Education and Research Center). The flight from and to Chicago, accommodation, and food will be covered by the University. Students are expected to cover any other outside costs. Instructor's consent is required for enrollment: priority will be given to GEOS/ENSC majors + people with other compelling reasons to join the class. When applying for the class, please give an overview of your existing Geo course experience.
Instructor(s): E. Kite Terms Offered: Spring Winter

GEOS 29002. Field Course in Modern and Ancient Environments. 100 Units.
This course, in its many iterations, has had consistent aims: to provide students with hands-on experience of the processes that produce sedimentary rocks, exposure to standard field methods and fieldwork safety, and experience in developing and conducting an original research project. We consider biological as well as physical processes of sediment production, dispersal, accumulation, and post-depositional modification, and methods
of paleoenvironmental analysis. We give significant attention to humans as geological agents: field areas today almost always exhibit legacy and/or ongoing effects from human activities. This year we explore the theme of Coasts and Coastal Resilience, using Lake Michigan shorelines as exemplars of coastal responses to key forcers - water (wave) regime, water level, and sediment supply - on societally relevant time scales. The spectrum of environments will include built structures such as seawalls, jetties, and hardened shorelines, and both natural and engineered "soft" shorelines. We will meet on Tuesdays and Thursdays 3:30-5:00, with approximately half devoted to lectures and discussion, and the other half to labs, which will be either indoors (using research wave tanks in Hinds) or outdoors (using nearby segments of the Lake Michigan shoreline). A day-long Saturday field excursion is also possible.

Instructor(s): S. Kidwell Terms Offered: Spring
Prerequisite(s): GEOS 13100 and 13200 recommended; contact instructor
Equivalent Course(s): ENSC 29002

GEOS 29003. Field Course in Oceanography. 100 Units.
Students in this course spend roughly a week sailing a tall ship from the SEA education program, learning oceanographic sampling techniques and data interpretation as well as principles of navigation and seamanship.
Prerequisite(s): Consent of instructor
Note(s): Interested students should contact the departmental counselor.

GEOS 29700. Reading and Research in the Geophysical Sciences. 100 Units.
Independent study; regular meetings with Geophysical Sciences faculty member required. Topics available include, but are not limited to: Mineralogy, Petrology, Geophysics, High Pressure Geophysics, Geodynamics, Volcanology, Cosmochemistry, Geochemistry, Atmospheric Dynamics, Paleoclimatology, Physical Oceanography, Chemical Oceanography, Paleoceanography, Atmospheric Chemistry, Fluid Dynamics, Glaciology, Climatology, Radiative Transfer, Cloud Physics, Morphometrics, Phylogeny, Analytical Paleontology, Evolution, Taphonomy, Macroevolution, Paleobiology, Paleobotany, Biomechanics, Paleoecology, Tectonics, Stratigraphy.
Instructor(s): Staff Terms Offered: Autumn, Spring, Summer, Winter
Prerequisite(s): Consent of instructor and departmental counselor
Note(s): Students are required to submit the College Reading and Research Course Form. Available to nonmajors for P/F grading. Must be taken for a quality grade when used to meet a requirement in the major.