Program of Study

Physics is concerned with the study of matter, energy, forces, and their interaction in the world and universe around us. The undergraduate curriculum in the Department of Physics leading to the BA in physics includes a strong emphasis on experiment and covers the broad fundamentals necessary for graduate study in theoretical or experimental physics, as well as some fields of engineering and many interdisciplinary specialties requiring a strong technical background (e.g., biophysics, medical physics, atmospheric and environmental sciences).

Students who are majoring in other fields of study may also complete a minor in physics. Information follows the description of the major.

Program Requirements

Courses

The curriculum leading to the BA degree in physics is designed for maximum flexibility consistent with a thorough coverage of the essential principles of physics. Degree requirements include introductory and advanced physics and mathematics courses, as well as physics electives that allow students to pursue specific interests.

Students who plan to major in physics are encouraged to start course work in their first year. However, the program can be completed in three years, so one could start physics in the second year without delaying graduation. Two of the physics and two of the mathematics courses can be designated as general education courses, with eighteen courses remaining to fulfill the major.

In general, students should take the most advanced courses for which they have the appropriate prerequisites. Entering students will be given a placement for either PHYS 13100 Mechanics or PHYS 14100 Honors Mechanics based on their mathematics and physics background. Either course is appropriate for students planning to major (or minor) in physics.

Mathematics

The mathematics requirement is a Mathematical Methods sequence, MATH 18300-18400-18500-18600 Mathematical Methods in the Physical Sciences I-II-III-IV. Alternatively, students may use an Analysis sequence (MATH 20300-20400-20500 Analysis in Rn I-II-III or higher) and MATH 16300 Honors Calculus III, though they will subsequently need to acquire certain math tools, as needed, on their own.

Summary of Requirements

<table>
<thead>
<tr>
<th>GENERAL EDUCATION</th>
<th>200</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following sequences:</td>
<td></td>
</tr>
<tr>
<td>PHYS 13100-13200 Mechanics; Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>PHYS 14100 & PHYS 14200 Honors Mechanics and Honors Electricity and Magnetism</td>
<td></td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td></td>
</tr>
<tr>
<td>MATH 15100-15200 Calculus I-II</td>
<td>200</td>
</tr>
<tr>
<td>MATH 16100-16200 Honors Calculus I-II</td>
<td></td>
</tr>
<tr>
<td>Total Units</td>
<td>400</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MAJOR</th>
<th>400</th>
</tr>
</thead>
<tbody>
<tr>
<td>One of the following:</td>
<td></td>
</tr>
<tr>
<td>PHYS 13300 Waves, Optics, and Heat</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 14300 Honors Waves, Optics, and Heat</td>
<td></td>
</tr>
<tr>
<td>One of the following sequences:</td>
<td></td>
</tr>
<tr>
<td>MATH 18300-18400-18500-18600 Mathematical Methods in the Physical Sciences I-II-III-IV</td>
<td></td>
</tr>
<tr>
<td>MATH 20300 & MATH 20400 & MATH 20500 & MATH 16300 Analysis in Rn I</td>
<td></td>
</tr>
<tr>
<td>MATH 20700 & MATH 20800 & MATH 20900 & MATH 16300 Honors Analysis in Rn I</td>
<td></td>
</tr>
<tr>
<td>MATH 20700 & MATH 20800 & MATH 20900 & MATH 16300 Honors Calculus III</td>
<td></td>
</tr>
<tr>
<td>Course Code</td>
<td>Course Name</td>
</tr>
<tr>
<td>--------------</td>
<td>--------------------------------------</td>
</tr>
<tr>
<td>PHYS 18500</td>
<td>Intermediate Mechanics</td>
</tr>
<tr>
<td>PHYS 23410</td>
<td>Quantum Mechanics I</td>
</tr>
<tr>
<td>PHYS 23510</td>
<td>Quantum Mechanics II</td>
</tr>
<tr>
<td>PHYS 24310</td>
<td>Advanced Quantum Mechanics</td>
</tr>
<tr>
<td>PHYS 21101-21102-21103</td>
<td>Experimental Physics I-II-III</td>
</tr>
<tr>
<td>PHYS 22500-22700</td>
<td>Intermediate Electricity and Magnetism I-II</td>
</tr>
<tr>
<td>PHYS 27900</td>
<td>Statistical and Thermal Physics</td>
</tr>
<tr>
<td></td>
<td>Three electives (to be selected from list of approved courses)</td>
</tr>
<tr>
<td></td>
<td>Total Units</td>
</tr>
</tbody>
</table>

* Credit may be granted by examination.
+ Or MATH 16310 or MATH 15910

Electives

In addition to specified course work, the physics major requires three electives. These electives may be selected from the following courses:

All 20000-level physics courses (except PHYS 29100-29200-29300, and PHYS 29700)

Any of the following courses:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASTR 21100</td>
<td>Computational Techniques in Astrophysics</td>
</tr>
<tr>
<td>ASTR 23900</td>
<td>Physics of Galaxies †</td>
</tr>
<tr>
<td>ASTR 24100</td>
<td>The Physics of Stars ‡</td>
</tr>
<tr>
<td>ASTR 24300</td>
<td>Cosmological Physics ‡</td>
</tr>
<tr>
<td>ASTR 25400</td>
<td>Radiation Processes in Astrophysics ‡</td>
</tr>
<tr>
<td>ASTR 25800</td>
<td>Astrophysics of Exoplanets</td>
</tr>
<tr>
<td>BIOS 29326</td>
<td>Introduction to Medical Physics and Medical Imaging</td>
</tr>
<tr>
<td>CHEM 26300</td>
<td>Chemical Kinetics and Dynamics</td>
</tr>
<tr>
<td>CHEM 26800</td>
<td>Computational Chemistry and Biology</td>
</tr>
<tr>
<td>CMSC 23710</td>
<td>Scientific Visualization</td>
</tr>
<tr>
<td>CMSC 28510</td>
<td>Introduction to Scientific Computing</td>
</tr>
<tr>
<td>CMSC 28515</td>
<td>Introduction to Numerical Partial Differential Equations</td>
</tr>
<tr>
<td>GEOS 21200</td>
<td>Physics of the Earth</td>
</tr>
<tr>
<td>GEOS 24220</td>
<td>Climate Foundations</td>
</tr>
<tr>
<td>GEOS 24230</td>
<td>Geophysical Fluid Dynamics: Foundations</td>
</tr>
<tr>
<td>GEOS 24240</td>
<td>Geophysical Fluid Dynamics: Rotation and Stratification</td>
</tr>
<tr>
<td>GEOS 24250</td>
<td>Geophysical Fluid Dynamics: Understanding the Motions of the Atmosphere and Oceans</td>
</tr>
<tr>
<td>GEOS 24550</td>
<td>Ocean Circulation</td>
</tr>
<tr>
<td>MATH 23500</td>
<td>Markov Chains, Martingales, and Brownian Motion</td>
</tr>
<tr>
<td>MATH 26200</td>
<td>Point-Set Topology</td>
</tr>
<tr>
<td>MATH 27000</td>
<td>Basic Complex Variables</td>
</tr>
<tr>
<td>MATH 27200</td>
<td>Basic Functional Analysis</td>
</tr>
<tr>
<td>MATH 27300</td>
<td>Basic Theory of Ordinary Differential Equations</td>
</tr>
<tr>
<td>MATH 27400</td>
<td>Introduction to Differentiable Manifolds and Integration on Manifolds</td>
</tr>
<tr>
<td>MATH 27500</td>
<td>Basic Theory of Partial Differential Equations</td>
</tr>
<tr>
<td>MATH 27600</td>
<td>Dynamical Systems</td>
</tr>
<tr>
<td>MENG 21100</td>
<td>Principles of Engineering Analysis I</td>
</tr>
<tr>
<td>MENG 26101</td>
<td>Transport Phenomena I: Forces and Flows</td>
</tr>
<tr>
<td>MENG 26102</td>
<td>Transport Phenomena II</td>
</tr>
<tr>
<td>MENG 26300</td>
<td>Engineering Electrodynamics</td>
</tr>
<tr>
<td>MENG 26400</td>
<td>Quantum Computation</td>
</tr>
<tr>
<td>STAT 23400</td>
<td>Statistical Models and Methods</td>
</tr>
<tr>
<td>or STAT 24400</td>
<td>Statistical Theory and Methods I</td>
</tr>
<tr>
<td>or STAT 24410</td>
<td>Statistical Theory and Methods Ia</td>
</tr>
<tr>
<td>STAT 24500</td>
<td>Statistical Theory and Methods II</td>
</tr>
</tbody>
</table>
Physics

or STAT 24510 Statistical Theory and Methods IIa
Or other courses approved by the program chair for physics

† Cannot be counted toward electives if used to satisfy requirements for the specialization in astrophysics.

Sample Programs

An example of what the major might look like is shown below.

In the first year, a physics sequence is taken concurrently with Mathematical Methods:

<table>
<thead>
<tr>
<th>First Year</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 13100 or 14100</td>
<td>100</td>
<td>PHYS 13200 or 14200</td>
<td>100</td>
<td>PHYS 13300 or 14300</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18300</td>
<td>100</td>
<td>MATH 18400</td>
<td>100</td>
<td>MATH 18500</td>
<td>100</td>
</tr>
<tr>
<td>Total Units: 600</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The Mathematical Methods sequence could also start in Winter Quarter, if additional exposure to calculus is needed.

The remaining required courses are typically distributed over the next three years, like so:

<table>
<thead>
<tr>
<th>Second Year</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 18500</td>
<td>100</td>
<td>PHYS 23410</td>
<td>100</td>
<td>PHYS 23150</td>
<td>100</td>
</tr>
<tr>
<td>MATH 18600</td>
<td>100</td>
<td></td>
<td>200</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Total Units: 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Third Year</th>
<th>Units</th>
<th>Winter Quarter</th>
<th>Units</th>
<th>Spring Quarter</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 24310</td>
<td>100</td>
<td>PHYS 22500</td>
<td>100</td>
<td>PHYS 22700</td>
<td>100</td>
</tr>
<tr>
<td>PHYS 21101</td>
<td>100</td>
<td>PHYS 21102</td>
<td>100</td>
<td>PHYS 21103</td>
<td>100</td>
</tr>
<tr>
<td>Total Units: 200</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fourth Year</th>
<th>Units</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Autumn Quarter</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PHYS 27900</td>
<td>100</td>
<td></td>
<td>100</td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>Total Units: 1100</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In addition, three electives (selected from a list of approved courses) must be taken. In deciding when to take electives, students should be mindful of any course prerequisites.

The required laboratory sequence PHYS 21101-21102-21103 is a year-long study of experimental physics. It is recommended, but not required, that Experimental Physics be taken in the third year.

Progress through the physics program can be accelerated by ‘doubling up’ on some of the required courses. For example, PHYS 24310 Advanced Quantum Mechanics and PHYS 27900 (http://collegecatalog.uchicago.edu/search/?P=PHYS%2019700/) may be taken concurrently in the third year, and PHYS 22500 (http://collegecatalog.uchicago.edu/search/?P=PHYS%2022500/) PHYS 22700 (http://collegecatalog.uchicago.edu/search/?P=PHYS%2022700/) may be concurrent with PHYS 23410 Quantum Mechanics I/PHYS 23510 Quantum Mechanics II in the second year. This provides more options in the third and fourth years for electives, as well as research or graduate course work. Note that it is possible to complete all program requirements in three years.

Finally, the sample programs shown here are only meant to be illustrative. Students are encouraged to speak with the departmental counselors in planning individual programs, especially regarding selection of mathematics courses and program electives.

Introductory Course

The introductory course for students in the physical sciences is divided into two variants—PHYS 13100-PHYS 13200-PHYS 13300 and PHYS 14100-PHYS 14200-PHYS 14300—so students may learn with others who have comparable physics and mathematics backgrounds. The essential physics content of these two sequences is the same, but the 140s sequence covers material at a higher mathematical level. Both PHYS 130s and PHYS 140s prepare students for further courses in the physics major or minor.

The Mathematical Methods sequence MATH 18300-18400-18500-18600 would be taken concurrently, with MATH 18300 starting in Autumn or Winter Quarter of first year. Alternatively, the Mathematical Methods sequence may be replaced with MATH 20300-20400-20500 or MATH 20700-20800-20900, and MATH 16300. Depending on math background, some portion of the first-year calculus sequence MATH 15100-MATH 15200-MATH 15300 or MATH 16100-MATH 16200-MATH 16300 may be needed prior to taking the Mathematical Methods or Analysis sequences.
First-year students are placed into either PHYS 13100 or PHYS 14100 based on Advanced Placement test scores. Subsequent adjustments in physics placement can be made by consulting the undergraduate program chair (KPTC 205) during Orientation week. Transfer students who have satisfactorily completed calculus-based introductory physics courses at another university may be granted appropriate transfer credit upon petition to, and approval by, the program chair.

Another introductory sequence, PHYS 12100-PHYS 12200-PHYS 12300, is intended for students pursuing studies in biology or medicine. The prerequisite is two quarters of calculus and completion of general chemistry. While topics are similar to the 130s and 140s sequences, PHYS 120s cannot serve as a prerequisite for further courses in physics, and thus cannot be used for the physics major or minor.

In all three sequences, a grade of at least C- is required to take the next course in the sequence. For a passing grade below C-, the student will need to obtain permission from the instructor of the next course before enrolling.

A student who completes PHYS 14100 or PHYS 14200 with a grade below C is normally required to move to PHYS 13200 or PHYS 13300 the following quarter. Petitions for a waiver of this requirement must be presented to the undergraduate program chair before the second day of the succeeding course. A student who receives an A or A- in PHYS 13100 may petition the undergraduate program chair to move to PHYS 14200.

Advanced Placement

Students who took both Physics C Advanced Placement examinations prior to matriculation in the College may receive credit for PHYS 12100 and/or PHYS 12200. Consult the section on Advanced Placement Credit (http://collegecatalog.uchicago.edu/thecollege/examinationcreditandtransfercredit/) in this catalog for more information.

Accreditation

Accreditation examinations are administered for the content of PHYS 12100-PHYS 12200-PHYS 12300 and PHYS 14100-PHYS 14200-PHYS 14300. The first examination may be taken by incoming students only at the time of matriculation in the College. Students who pass the first examination (for PHYS 12100 or PHYS 14100) will receive credit for the lecture part of the course only and will then be invited to try the next examination of the sequence. All students who receive advanced standing on the basis of a physics accreditation examination are interviewed by the undergraduate program chair to determine the extent of their lab experience. Additional laboratory work may be required.

GRADING

All regular (non-research) physics courses must be taken for quality grades. All courses used to satisfy prerequisites must be taken for quality grades. The Department of Physics requires students to pass PHYS 13100-13200-13300 or PHYS 14100-14200-14300, and PHYS 18500-23410-23510 with an average of 2.0 or higher to continue in the program.

OPPORTUNITIES FOR PARTICIPATION IN RESEARCH

The physics program offers unique opportunities for College students to become actively involved in the research being conducted by faculty of the department. Interested students are welcome to consult with the departmental counselors. The focus of much of the undergraduate research is structured around the Bachelor’s Thesis (PHYS 29100-PHYS 29200-PHYS 29300). Alternatively, third- or fourth-year students majoring in physics may register for research for academic credit (PHYS 29700). In addition to these formal arrangements, students at any level may become involved in research by working in a faculty member’s lab or research group on an extracurricular basis.

HONORS

The two requirements for a BA with Honors are as follows:

1) a minimum GPA of 3.3 in the courses listed under Major in the preceding Summary of Requirements section.

2) completion of PHYS 29100-PHYS 29200-PHYS 29300 with a grade of B or higher, based on a bachelor’s thesis describing an approved research project completed during the year.

MINOR PROGRAM IN PHYSICS

The minor in physics is designed to present a coherent program of study to students with a strong interest in physics but insufficient time to pursue the major. The courses required for the minor are:

One of the following: 100
PHYS 13300 Waves, Optics, and Heat
PHYS 14300 Honors Waves, Optics, and Heat

One of the following: 400
MATH Mathematical Methods in the Physical Sciences I-II-III-IV
18300-18400-18500-18600
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHYS 13100</td>
<td>General Physics I. 100 Units.</td>
<td></td>
</tr>
<tr>
<td>PHYS 12200</td>
<td>General Physics II. 100 Units.</td>
<td></td>
</tr>
<tr>
<td>PHYS 12300</td>
<td>General Physics III. 100 Units.</td>
<td></td>
</tr>
</tbody>
</table>

PHYS 12100-12200-12300. General Physics I-II-III.

This is a one-year sequence in the fundamentals of physics for students in the biological sciences and pre-medical studies. Univariable calculus will be used as needed. Where appropriate, attention will be drawn to interdisciplinary applications. The first two courses meet the general education requirement in physical sciences. (L)

PHYS 12100. General Physics I. 100 Units.
This course covers Newtonian mechanics and fluid dynamics. (L)
Terms Offered: Autumn
Prerequisite(s): MATH 13200 or 15200 or 16200; CHEM 11300 or 12300.

PHYS 12200. General Physics II. 100 Units.
This course covers electric and magnetic fields. (L).
Terms Offered: Winter
Prerequisite(s): PHYS 12100

PHYS 12300. General Physics III. 100 Units.
This course covers waves, optics, and modern physics. (L)
Terms Offered: Spring
Prerequisite(s): PHYS 12200

PHYS 13100-13200-13300. Mechanics; Electricity and Magnetism; Waves, Optics, and Heat.
This is a one-year introductory sequence in physics for students in the physical sciences. Univariable calculus will be used extensively. The first two courses meet the general education requirement in physical sciences. (L)
PHY 13100. Mechanics. 100 Units.
This is a three-course calculus-based sequence in the fundamentals of physics and represents a full-year’s
work. Content is not repeated from course to course. Topics include classical mechanics, electricity &
magnetism, wave motion, optics, and an introduction to heat and thermodynamics. All labs must be
completed to receive credit for the course. Final exams are held on the last Wednesday of each course. PHYS
13100 and 13200 count toward the general education requirement in the natural and mathematical sciences.
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): MATH 13100-13200-13300 or 15100-15200-15300 or 16100-16200-16300. (MATH
15100-15200-15300 or 16100-16200-16300 may be taken concurrently.)

PHY 13200. Electricity and Magnetism. 100 Units.
This is a three-course calculus-based sequence in the fundamentals of physics and represents a full-year’s
work. Content is not repeated from course to course. Topics include classical mechanics, electricity &
magnetism, wave motion, optics, and an introduction to heat and thermodynamics. All labs must be
completed to receive credit for the course. Final exams are held on the last Wednesday of each course. PHYS
13100 and 13200 count toward the general education requirement in the natural and mathematical sciences.
Terms Offered: Winter
Prerequisite(s): PHYS 13100 or 14100; minimum grade of C- in PHYS 13100 or 14100 or consent of instructor

PHY 13300. Waves, Optics, and Heat. 100 Units.
Topics include mechanical waves, sound, light, polarization, reflection and refraction, interference,
diffraction, geometrical optics, heat, kinetic theory, and thermodynamics. (L)
Instructor(s): Staff Terms Offered: Spring
Prerequisite(s): PHYS 13200 or 14200; minimum grade of C- in PHYS 13200 or 14200 or consent of instructor

PHY 14100-14200-14300. Honors Mechanics; Honors Electricity and Magnetism; Honors Waves, Optics, and
Heat.
This is a one-year introductory sequence in physics for students in the physical sciences. A strong background in
univariable calculus is assumed. Multivariable and vector calculus will be introduced and used extensively. The
first two courses meet the general education requirement in physical sciences. (L)

PHY 14100. Honors Mechanics. 100 Units.
Topics include particle motion, Newton’s Laws, work and energy, systems of particles, rigid-body motion,
gravitation, oscillations, and special relativity. (L)
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): Placement required.

PHY 14200. Honors Electricity and Magnetism. 100 Units.
Topics include electric fields, Gauss’ law, electric potential, capacitors, DC circuits, magnetic fields, Ampere’s
law, induction, Faraday’s law, AC circuits, Maxwell’s equations, and electromagnetic waves. (L)
Instructor(s): Staff Terms Offered: Winter
Prerequisite(s): PHYS 14100

PHY 14300. Honors Waves, Optics, and Heat. 100 Units.
Topics include mechanical waves, sound, light, polarization, reflection and refraction, interference,
diffraction, geometrical optics, heat, kinetic theory, and thermodynamics. (L)
Instructor(s): Staff Terms Offered: Spring
Prerequisite(s): PHYS 14200

PHY 15400. Modern Physics. 100 Units.
This course is an introduction to quantum physics. Topics include Einstein’s quantum theory of light, the wave
nature of particles, atomic structure, the Schrödinger equation, quantum mechanics in one and three dimensions,
angular momentum and spin, and the hydrogen atom. Applications to nuclear and solid-state physics are
presented. (L)
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): PHYS 14300 or (PHYS 13300 and PHYS 22000)

PHY 18500. Intermediate Mechanics. 100 Units.
Topics include a review of Newtonian mechanics, the calculus of variations, Lagrangian and Hamiltonian
mechanics, generalized coordinates, canonical momenta, phase space, constrained systems, central-force motion,
non-inertial reference frames, and rigid-body motion.
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): PHYS 13100 or 14100; PHYS 22000 or consent

PHY 21101-21102-21103. Experimental Physics I-II-III.
This is a year-long laboratory sequence, offering experiments in atomic, molecular, solid-state, nuclear, and
particle physics. Additional material, as needed, is presented in supplemental lectures. Content varies from
quarter to quarter. (L)
Note(s): Open only to students who are majoring in Physics.
PHYS 21101. Experimental Physics I. 100 Units.
This is a year-long laboratory sequence, offering experiments in atomic, molecular, solid-state, nuclear, and particle physics. Additional material, as needed, is presented in supplemental lectures. Content varies from quarter to quarter.
Instructor(s): Staff
Prerequisite(s): PHYS 23510

PHYS 21102. Experimental Physics II. 100 Units.
A continuation of the year-long laboratory sequence.
Terms Offered: Winter
Prerequisite(s): PHYS 21101

PHYS 21103. Experimental Physics III. 100 Units.
A continuation of the year-long laboratory sequence.
Terms Offered: Spring
Prerequisite(s): PHYS 21102

PHYS 21400. Creative Machines and Innovative Instruments. 100 Units.
This course is intended for interested students with no previous experience in design. Topics include mechanical design, machining, materials properties, computer-aided design, rapid prototyping, circuit design and electrical measurement. The course will be project-based, and the final project will be the design and construction of a functioning machine.
Terms Offered: Winter

PHYS 22000. Introduction to Mathematical Methods in Physics. 100 Units.
This course, with concurrent enrollment in PHYS 13300, is required of students who plan to major in physics. Topics include infinite series and power series, complex numbers, linear equations and matrices, partial differentiation, multiple integrals, vector analysis, and Fourier series. These methods are used to study Maxwell's equations, wave packets, and coupled oscillators.
Instructor(s): Staff
Prerequisite(s): PHYS 13200; MATH 15200 or 16200

PHYS 22100. Mathematical Methods in Physics. 100 Units.
Topics include linear algebra and vector spaces, ordinary and partial differential equations, calculus of variations, special functions, series solutions of differential equations, and integral transforms.
Instructor(s): Staff
Prerequisite(s): PHYS 14300 or (PHYS 13300 and PHYS 22000)

PHYS 22500-22700. Intermediate Electricity and Magnetism I-II.
This is a two-quarter sequence on static and time-varying electric and magnetic fields.

PHYS 22500. Intermediate Electricity and Magnetism I. 100 Units.
Topics include electrostatics and magnetostatics, boundary-value problems, and electric and magnetic fields in matter.
Terms Offered: Winter
Prerequisite(s): PHYS 13200 or 14200; PHYS 22100 or MATH 20700 or MATH 20250 (MATH 20250 may be concurrent)

PHYS 22700. Intermediate Electricity and Magnetism II. 100 Units.
Topics include electromagnetic induction, electromagnetic waves, and radiation.
Terms Offered: Spring
Prerequisite(s): PHYS 22500

PHYS 22600. Electronics. 100 Units.
This hands-on experimental course is intended to develop confidence, understanding, and design ability in modern electronics. It is not a course in the physics of semiconductors. In two lab sessions a week, we explore the properties of diodes, transistors, amplifiers, operational amplifiers, oscillators, field effect transistors, logic gates, digital circuits, analog-to-digital and digital-to-analog converters, phase-locked loops, and more. Lectures supplement the lab. (L)
Instructor(s): Staff
Prerequisite(s): PHYS 12200 or 13200 or 14200

PHYS 23410-23510-24310. Quantum Mechanics I-II-III.
This is a three-quarter sequence that, starting from basic postulates, develops the formalism of quantum mechanics and uses it to study atomic phenomena.

PHYS 23410. Quantum Mechanics I. 100 Units.
A study of wave-particle duality leading to the basic postulates of quantum mechanics is presented. Topics include the uncertainty principle, applications of the Schrödinger equation in one and three dimensions, the quantum harmonic oscillator, rotational invariance and angular momentum, the hydrogen atom, and spin.
Terms Offered: Winter
Prerequisite(s): PHYS 18500; PHYS 22100 or MATH 20700 or MATH 20250 (MATH 20250 may be concurrent)
PHYS 23510. Quantum Mechanics II. 100 Units.
A review of quantum mechanics is presented, with emphasis on Hilbert space, observables, and eigenstates. Topics include spin and angular momentum, time-independent perturbation theory, fine and hyperfine structure of hydrogen, the Zeeman and Stark effects, many-electron atoms, molecules, the Pauli exclusion principle, and radiative transitions.
Terms Offered: Spring
Prerequisite(s): PHYS 23410

PHYS 24310. Advanced Quantum Mechanics. 100 Units.
This course will include topics not normally covered in PHYS 23410-23510. Topics may include the following: symmetry in quantum mechanics; quantum mechanics and electromagnetism; adiabatic approximation and Berry phase; path integral formulation; scattering.
Terms Offered: Autumn
Prerequisite(s): PHYS 23510

PHYS 23600. Solid State Physics. 100 Units.
Topics include a review of quantum statistics, crystal structure and crystal binding, lattice vibrations and phonons, liquid helium, the free-electron model of metals, the nearly-free-electron model, semi-conductors, and optical properties of solids.
Instructor(s): Staff Terms Offered: Winter
Prerequisite(s): PHYS 23510 and 27900

PHYS 23700. Nuclei and Elementary Particles. 100 Units.
This course covers topics such as nuclear structure, processes of transformation, observables of the nucleus, passage of nuclear radiation through matter, accelerators and detectors, photons, leptons, mesons, and baryons, hadronic interactions, and the weak interaction.
Instructor(s): Staff Terms Offered: Spring
Prerequisite(s): PHYS 23510

PHYS 25000. Computational Physics. 100 Units.
This course introduces the use of computers in the physical sciences. After an introduction to programming basics, we cover numerical solutions to fundamental types of problems, including cellular automata, artificial neural networks, computer simulations of complex systems, and finite element analysis. Additional topics may include an introduction to graphical programming, with applications to data acquisition and device control. (L)
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): PHYS 13300 or 14300 required; knowledge of computer programming not required

PHYS 26400. Spacetime and Black Holes. 100 Units.
This course is an introduction to general relativity, focusing on metrics and geodesics, and treating gravity as the curvature of four-dimensional spacetime. It will begin by fully exploring special relativity, and will then introduce the basic tools of physics in curved spacetime. It will also study black holes, including aspects of the event horizon and singularity, and the properties of orbits in black hole spacetimes.
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): PHYS 18500 or consent of instructor

PHYS 27900. Statistical and Thermal Physics. 100 Units.
This course develops a statistical description of physical systems. Topics include elements of probability theory, equilibrium and fluctuations, thermodynamics, canonical ensembles, the equipartition theorem, quantum statistics of ideal gases, and kinetic theory. Prerequisite(s): PHYS 23400, and PHYS 22100 or MATH 20500
Instructor(s): Staff Terms Offered: Autumn
Prerequisite(s): PHYS 23510; PHYS 22100 or MATH 20400 or MATH 20800

PHYS 29100-29200-29300. Bachelor's Thesis I-II-III.
This year-long sequence of courses is designed to involve the student in current research. Over the course of the year, the student works on a research project in physics or a closely related field, leading to the writing of a bachelor's thesis. A student who submits a satisfactory thesis, earns a grade of B or higher based on the project, and achieves a GPA of 3.0 or higher in courses required for the major is eligible to receive a BA with honors. The project may be one suggested by the instructor or one proposed by the student and approved by the instructor. In either case, all phases of the project (including the literature search, design and construction of the experiments, and analysis) must be done by the student. The instructor and faculty adviser, as well as members of the adviser's research group, are available for consultation. Note: Students are required to submit the College Reading and Research Course Form in Autumn Quarter. Students receive a grade in each quarter of registration: P/F grading in Autumn and Winter Quarters, and a quality grade in Spring Quarter.

PHYS 29100. Bachelor's Thesis I. 100 Units.
Students are required to submit the College Reading and Research Course Form. P/F grading.
Terms Offered: Autumn
Prerequisite(s): Open to students who are majoring in Physics with fourth-year standing and consent of instructor.
PHYS 29200. Bachelor's Thesis II. 100 Units.
P/F grading.
Terms Offered: Winter
Prerequisite(s): PHYS 29100

PHYS 29300. Bachelor's Thesis III. 100 Units.
Quality grading.
Terms Offered: Spring
Prerequisite(s): PHYS 29200

PHYS 29700. Participation in Research. 100 Units.
By mutual agreement, students work in a faculty member's research group. Participation in research may take the form of independent work (with some guidance) on a small project, or of assistance in research to an advanced graduate student or research associate. A written report must be submitted at the end of the quarter. Students may register for PHYS 29700 for as many quarters as they wish; students need not remain with the same faculty member each quarter. (L)
Terms Offered: Autumn Spring Summer Winter
Prerequisite(s): Consent of instructor and departmental counselor. Open to students who are majoring in Physics with third- or fourth-year standing.
Note(s): Students are required to submit the College Reading and Research Course Form. May be taken for P/F grading with consent of instructor.